An evolutionary membrane algorithm for global numerical optimization problems

Nature-inspired algorithms for optimization are significant topics in the areas of computational intelligence. The contribution of this paper is to present a new heuristic intelligent evolutionary algorithm based on membrane systems to solve the global numerical optimization problems. The proposed algorithm employs the fundamental ingredients of membrane systems, including multisets, reaction rules and membrane structure. In addition, the proposed algorithm incorporates information of the adjacent symbol-objects, to guide the evolution toward the global optimum, efficiently. More specifically, symbol-objects are evolved by the cellular automata model which invokes the rewrite rules to exchange the information of the adjacent symbol-objects. Moreover, sharing information in the skin membrane is implemented, which accelerates the speed of the proposed algorithm to find the global optimal solution. In the extensive experimental study, the effectiveness of the proposed algorithm is demonstrated with the benchmark global numeric optimization problems. The experimental results indicate that the proposed method is a competitive optimizer in comparison with the four state-of-the-art evolutionary algorithms.

[1]  Pinar Çivicioglu,et al.  Artificial cooperative search algorithm for numerical optimization problems , 2013, Inf. Sci..

[2]  Patrick Siarry,et al.  A survey on optimization metaheuristics , 2013, Inf. Sci..

[3]  Alan S. Perelson,et al.  Self-nonself discrimination in a computer , 1994, Proceedings of 1994 IEEE Computer Society Symposium on Research in Security and Privacy.

[4]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[5]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[6]  Oscar Castillo,et al.  Toolbox for bio‐inspired optimization of mathematical functions , 2014, Comput. Appl. Eng. Educ..

[7]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[8]  Ning Wang,et al.  A bio-inspired algorithm based on membrane computing and its application to gasoline blending scheduling , 2011, Comput. Chem. Eng..

[9]  Gheorghe Paun,et al.  Introduction to Membrane Computing , 2006, Applications of Membrane Computing.

[10]  Gheorghe Paun,et al.  A guide to membrane computing , 2002, Theor. Comput. Sci..

[11]  Gheorghe Paun,et al.  Computing with Membranes , 2000, J. Comput. Syst. Sci..

[12]  Rasmus K. Ursem,et al.  Diversity-Guided Evolutionary Algorithms , 2002, PPSN.

[13]  Ponnuthurai N. Suganthan,et al.  A Differential Covariance Matrix Adaptation Evolutionary Algorithm for real parameter optimization , 2012, Inf. Sci..

[14]  Dervis Karaboga,et al.  A modified Artificial Bee Colony algorithm for real-parameter optimization , 2012, Inf. Sci..

[15]  Oscar Castillo,et al.  Optimization of type-2 fuzzy systems based on bio-inspired methods: A concise review , 2012, Inf. Sci..

[16]  Marian Gheorghe,et al.  A multi-objective membrane algorithm for knapsack problems , 2010, 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA).

[17]  Ali R. Yildiz,et al.  Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach , 2013, Inf. Sci..

[18]  Xiangxiang Zeng,et al.  Time-Free Spiking Neural P Systems , 2011, Neural Computation.

[19]  P. N. Suganthan,et al.  A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization , 2012, Inf. Sci..

[20]  Liang Huang,et al.  Multiobjective Optimization for Controller Design , 2008 .

[21]  Linqiang Pan,et al.  Spiking Neural P Systems with Astrocytes , 2012, Neural Computation.

[22]  Jerne Nk Towards a network theory of the immune system. , 1974 .

[23]  Gheorghe Paun,et al.  The Oxford Handbook of Membrane Computing , 2010 .

[24]  Chuang Liu,et al.  A novel evolutionary membrane algorithm for global numerical optimization , 2012, 2012 Third International Conference on Intelligent Control and Information Processing.

[25]  G B Ermentrout,et al.  Cellular automata approaches to biological modeling. , 1993, Journal of theoretical biology.

[26]  Luigi Fortuna,et al.  Chaotic sequences to improve the performance of evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[27]  Fang Liu,et al.  A Novel Immune Clonal Algorithm for MO Problems , 2012, IEEE Transactions on Evolutionary Computation.

[28]  Oscar Castillo,et al.  Human evolutionary model: A new approach to optimization , 2007, Inf. Sci..

[29]  Xin Yao,et al.  Memetic Algorithm With Extended Neighborhood Search for Capacitated Arc Routing Problems , 2009, IEEE Transactions on Evolutionary Computation.

[30]  Thomas Stützle,et al.  Incremental Social Learning in Particle Swarms , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[31]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[32]  Marian Gheorghe,et al.  A Quantum-Inspired Evolutionary Algorithm Based on P systems for Knapsack Problem , 2008, Fundam. Informaticae.

[33]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[34]  Dipankar Dasgupta,et al.  An Overview of Artificial Immune Systems and Their Applications , 1993 .

[35]  Hao Gao,et al.  A New Particle Swarm Algorithm and Its Globally Convergent Modifications , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[36]  Carlos A. Coello Coello,et al.  A T-cell algorithm for solving dynamic optimization problems , 2011, Inf. Sci..

[37]  Catalin Buiu,et al.  Development of membrane controllers for mobile robots , 2012, Inf. Sci..

[38]  Masaharu Munetomo,et al.  An adaptive parameter binary-real coded genetic algorithm for constraint optimization problems: Performance analysis and estimation of optimal control parameters , 2013, Inf. Sci..

[39]  Il Hong Suh,et al.  Dynamic multi-objective optimization based on membrane computing for control of time-varying unstable plants , 2011, Inf. Sci..

[40]  Dong Hwa Kim,et al.  A hybrid genetic algorithm and bacterial foraging approach for global optimization , 2007, Inf. Sci..

[41]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[42]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[43]  Shengxiang Yang,et al.  A memetic particle swarm optimization algorithm for multimodal optimization problems , 2011, 2011 Chinese Control and Decision Conference (CCDC).

[44]  Oscar Castillo,et al.  An improved evolutionary method with fuzzy logic for combining Particle Swarm Optimization and Genetic Algorithms , 2011, Appl. Soft Comput..

[45]  Qi Meng,et al.  A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems , 2013, Appl. Soft Comput..

[46]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[47]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[48]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[49]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..

[50]  Fearghal Morgan,et al.  Maintaining Healthy Population Diversity Using Adaptive Crossover, Mutation, and Selection , 2011, IEEE Transactions on Evolutionary Computation.

[51]  Carlos García-Martínez,et al.  Memetic Algorithms for Continuous Optimisation Based on Local Search Chains , 2010, Evolutionary Computation.

[52]  Leandro Nunes de Castro,et al.  Fundamentals of natural computing: an overview , 2007 .

[53]  Carlos García-Martínez,et al.  Global and local real-coded genetic algorithms based on parent-centric crossover operators , 2008, Eur. J. Oper. Res..

[54]  Fernando José Von Zuben,et al.  Learning and optimization using the clonal selection principle , 2002, IEEE Trans. Evol. Comput..

[55]  Maoguo Gong,et al.  Baldwinian learning in clonal selection algorithm for optimization , 2010, Inf. Sci..

[56]  Elias Kyriakides,et al.  Hybrid Ant Colony-Genetic Algorithm (GAAPI) for Global Continuous Optimization , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[57]  Hui Li,et al.  Adaptive strategy selection in differential evolution for numerical optimization: An empirical study , 2011, Inf. Sci..

[58]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[59]  Jing J. Liang,et al.  Niching particle swarm optimization with local search for multi-modal optimization , 2012, Inf. Sci..

[60]  E. Chong,et al.  Introduction to optimization , 1987 .

[61]  Gary G. Yen,et al.  Cultural-Based Multiobjective Particle Swarm Optimization , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[62]  Chuang Liu,et al.  A multi-objective evolutionary algorithm based on membrane systems , 2011, The Fourth International Workshop on Advanced Computational Intelligence.