Riemannian geometry in thermodynamic fluctuation theory

Although thermodynamic fluctuation theory originated from statistical mechanics, it may be put on a completely thermodynamic basis, in no essential need of any microscopic foundation. This review views the theory from the macroscopic perspective, emphasizing, in particular, notions of covariance and consistency, expressed naturally using the language of Riemannian geometry. Coupled with these concepts is an extension of the basic structure of thermodynamic fluctuation theory beyond the classical one of a subsystem in contact with an infinite uniform reservoir. Used here is a hierarchy of concentric subsystems, each of which samples only the thermodynamic state of the subsystem immediately larger than it. The result is a covariant thermodynamic fluctuation theory which is plausible beyond the standard second-order entropy expansion. It includes the conservation laws and is mathematically consistent when applied to fluctuations inside subsystems. Tests on known models show improvements. Perhaps most significantly, the covariant theory offers a qualitatively new tool for the study of fluctuation phenomena: the Riemannian thermodynamic curvature. The thermodynamic curvature gives, for any given thermodynamic state, a lower bound for the length scale where the classical thermodynamic fluctuation theory based on a uniform environment could conceivably hold. Straightforward computation near the critical point reveals that the curvature equals the correlation volume, a physically appealing finding. The combination of the interpretation of curvature with a well-known proportionality between the free energy and the inverse of the correlation volume yields a purely thermodynamic theory of the critical point. The scaled equation of state follows from the values of the critical exponents. The thermodynamic Riemannian metric may be put into the broader context of information theory.

[1]  M. Wehner Numerical Evaluation of Path Integral Solutions to Fokker-Planck Equations with Application to Void Formation. , 1983 .

[2]  Bjarne Andresen,et al.  The significance of Weinhold’s length , 1980 .

[3]  F. Schlögl,et al.  Thermodynamic metric and stochastic measures , 1985 .

[4]  R. Griffiths Thermodynamic Functions for Fluids and Ferromagnets near the Critical Point , 1967 .

[5]  B. Widom,et al.  Equation of State in the Neighborhood of the Critical Point , 1965 .

[6]  Ruppeiner Comment on "Length and curvature in the geometry of thermodynamics" , 1985, Physical review. A, General physics.

[7]  B. Mandelbrot The Role of Sufficiency and of Estimation in Thermodynamics , 1962 .

[8]  M. Fisher,et al.  Continuum fluids with a discontinuity in the pressure , 1983 .

[9]  H. Janyszek,et al.  Geometrical structure of the state space in classical statistical and phenomenological thermodynamics , 1989 .

[10]  M. Wehner,et al.  Vacancy cluster evolution in metals under irradiation , 1985 .

[11]  Frank Weinhold,et al.  Metric geometry of equilibrium thermodynamics. II. Scaling, homogeneity, and generalized Gibbs–Duhem relations , 1975 .

[12]  B. Widom,et al.  The critical point and scaling theory , 1974 .

[13]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[14]  Frank Weinhold,et al.  Metric geometry of equilibrium thermodynamics. III. Elementary formal structure of a vector‐algebraic representation of equilibrium thermodynamics , 1975 .

[15]  Frank Weinhold,et al.  Metric geometry of equilibrium thermodynamics , 1975 .

[16]  H. Janyszek On the geometrical structure of the generalized quantum Gibbs states , 1986 .

[17]  George Ruppeiner New thermodynamic fluctuation theory using path integrals , 1983 .

[18]  Benoit B. Mandelbrot,et al.  An outline of a purely phenomenological theory of statistical thermodynamics-I: Canonical ensembles , 1956, IRE Trans. Inf. Theory.

[19]  Richard F. Greene,et al.  On the Formalism of Thermodynamic Fluctuation Theory , 1951 .

[20]  L. Diósi,et al.  Mapping the van der Waals state space , 1989 .

[21]  Schoen,et al.  Statistical approach to the geometric structure of thermodynamics. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[22]  K. Wilson Problems in Physics with many Scales of Length , 1979 .

[23]  Gilmore Reply to "Comment on 'Length and curvature in the geometry of thermodynamics' " , 1985, Physical review. A, General physics.

[24]  D. E. Aspnes,et al.  Static Phenomena Near Critical Points: Theory and Experiment , 1967 .

[25]  P. Salamon,et al.  Geometry of the ideal gas. , 1985, Physical review. A, General physics.

[26]  G. Ruppeiner,et al.  Thermodynamic curvature of a one‐dimensional fluid , 1990 .

[27]  L. Tisza THE CONCEPTUAL STRUCTURE OF PHYSICS , 1963 .

[28]  Robert Graham,et al.  Covariant formulation of non-equilibrium statistical thermodynamics , 1977 .

[29]  Ruppeiner Riemannian geometric theory of critical phenomena. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[30]  B. Mandelbrot On the Derivation of Statistical Thermodynamics from Purely Phenomenological Principles , 1964 .

[31]  R. Levine,et al.  Geometry in classical statistical thermodynamics , 1986 .

[32]  Bjarne Andresen,et al.  Thermodynamics in finite time , 1984 .

[33]  L. L. Campbell,et al.  The relation between information theory and the differential geometry approach to statistics , 1985, Inf. Sci..

[34]  Wilding,et al.  Scaling fields and universality of the liquid-gas critical point. , 1992, Physical review letters.

[35]  E. Tirapegui,et al.  SHORT DERIVATION OF FEYNMAN LAGRANGIAN FOR GENERAL DIFFUSION PROCESSES , 1980 .

[36]  J. Rubí,et al.  Kerr black hole thermodynamical fluctuations , 1985 .

[37]  G. Ruppeiner Correlation function decay in linear continuum systems , 1991 .

[38]  Peter Salamon,et al.  A geometrical measure for entropy changes , 1986 .

[39]  M. Klein,et al.  Thermodynamics in Einstein's Thought: Thermodynamics played a special role in Einstein's early search for a unified foundation of physics. , 1967, Science.

[40]  W. Bonnar,et al.  Boyle's Law and gravitational instability , 1956 .

[41]  R. Mrugala On equivalence of two metrics in classical thermodynamics , 1984 .

[42]  Robert Graham,et al.  Path integral formulation of general diffusion processes , 1977 .

[43]  Gilmore Reply to "Comment on 'Length and curvature in the geometry of thermodynamics' " , 1984, Physical review. A, General physics.

[44]  J. Provost,et al.  Riemannian structure on manifolds of quantum states , 1980 .

[45]  R. Reid,et al.  On the relationship between pairwise fluctuations and thermodynamic derivatives , 1986 .

[46]  M. Klein,et al.  Theory of Critical Fluctuations , 1949 .

[47]  Proof of identity of Graham and Dekker covariant lattice propagators , 1981 .

[48]  Nulton,et al.  Statistical mechanics of combinatorial optimization. , 1988, Physical review. A, General physics.

[49]  Frank Weinhold,et al.  Metric geometry of equilibrium thermodynamics. IV. Vector‐algebraic evaluation of thermodynamic derivatives , 1975 .

[50]  O. K. Rice,et al.  Density fluctuations and the specific heat near the critical point. II , 1974 .

[51]  P. Debenedetti Generalized Massieu–Planck functions: Geometric representation, extrema and uniqueness properties , 1986 .

[52]  Berry,et al.  Field thermodynamic potentials and geometric thermodynamics with heat transfer and fluid flow. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[53]  L. Tisza The thermodynamics of phase equilibrium , 1961 .

[54]  Diósi,et al.  Covariant evolution equation for the thermodynamic fluctuations. , 1985, Physical review. A, General physics.

[55]  G. Lewis GENERALIZED THERMODYNAMICS INCLUDING THE THEORY OF FLUCTUATIONS , 1931 .

[56]  P. Debenedetti On the relationship between principal fluctuations and stability coefficients in multicomponent systems , 1986 .

[57]  G. Valenti,et al.  Exceptionality Condition and Linearization Procedure for a Third Order Nonlinear PDE , 1994 .

[58]  Berry,et al.  Conservation laws from Hamilton's principle for nonlocal thermodynamic equilibrium fluids with heat flow. , 1989, Physical review. A, General physics.

[59]  George Ruppeiner Implementation of an adaptive, constant thermodynamic speed simulated annealing schedule , 1988 .

[60]  R. Ingarden Information geometry in functional spaces of classical and quantum finite statistical systems , 1981 .

[61]  Endo,et al.  Differential geometry of nonequilibrium processes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[62]  W. G. Wolfer,et al.  Numerical evaluation of path-integral solutions to Fokker-Planck equations. III. Time and functionally dependent coefficients. , 1987, Physical review. A, General physics.

[63]  Zevi W. Salsburg,et al.  Molecular Distribution Functions in a One‐Dimensional Fluid , 1953 .

[64]  John E. Robinson Note on the Bose-Einstein Integral Functions , 1951 .

[65]  G. Ruppeiner,et al.  Application of Riemannian geometry to the thermodynamics of a simple fluctuating magnetic system , 1981 .

[66]  Andrea J. Liu,et al.  The three-dimensional Ising model revisited numerically , 1989 .

[67]  Peter Salamon,et al.  Thermodynamic length and dissipated availability , 1983 .

[68]  N. Mermin,et al.  Revised Scaling Equation of State at the Liquid-Vapor Critical Point , 1973 .

[69]  C. Kittel Temperature Fluctuation: An Oxymoron , 1988 .

[70]  Berry,et al.  Thermodynamic geometry and the metrics of Weinhold and Gilmore. , 1988, Physical review. A, General physics.

[71]  P. Salamon,et al.  Simulated annealing with constant thermodynamic speed , 1988 .

[72]  A. Bruce Universal phenomena near structural phase transitions , 1981 .

[73]  G. Hu,et al.  General theory of Onsager symmetries for perturbations of equilibrium and nonequilibrium steady states , 1993 .

[74]  B. Mandelbrot Temperature Fluctuation: A Well‐Defined and Unavoidable Notion , 1989 .

[75]  L. Diósi,et al.  A new thermodynamical expression for calculating the correlation length , 1985 .

[76]  J. Rubí,et al.  Thermodynamical fluctuations of a massive Schwarzschild black hole , 1983 .

[77]  David Jou,et al.  On the thermodynamic curvature of nonequilibrium gases , 1985 .

[78]  É. Brézin,et al.  Universal ratios of critical amplitudes near four dimensions , 1974 .

[79]  H. Frisch,et al.  Metricization of Thermodynamic State Space and the Renormalization Group , 1984 .

[80]  W. Wootters Statistical distance and Hilbert space , 1981 .

[81]  Peter Salamon,et al.  Length in statistical thermodynamics , 1985 .

[82]  Albright,et al.  Crossover from singular to regular thermodynamic behavior of fluids in the critical region. , 1987, Physical review. B, Condensed matter.

[83]  Mrugala,et al.  Riemannian geometry and the thermodynamics of model magnetic systems. , 1989, Physical review. A, General physics.

[84]  D. Jou,et al.  Non-equilibrium hydrodynamic fluctuations and a generalised entropy , 1982 .

[85]  F. Weinhold Thermodynamics and geometry , 1976 .

[86]  D. Stauffer,et al.  Universality of Second-Order Phase Transitions: The Scale Factor for the Correlation Length , 1972 .

[87]  B. Lukács,et al.  Callen's postulates and the riemannian space of thermodynamic states , 1986 .

[88]  C. Gearhart Einstein before 1905: The early papers on statistical mechanics , 1990 .

[89]  Berry,et al.  Inducing Weinhold's metric from Euclidean and Riemannian metrics. , 1988, Physical review. A, General physics.

[90]  F. Weinhold Metric geometry of equilibrium thermodynamics. V. Aspects of heterogeneous equilibrium , 1976 .

[91]  H. Janyszek On the Riemannian metrical structure in the classical statistical equilibrium thermodynamics , 1986 .

[92]  H. Dekker Time-local gaussian processes, path integrals and nonequilibrium nonlinear diffusion , 1976 .

[93]  H. Stöcker,et al.  Hot nuclear matter , 1985 .

[94]  P. Quay,et al.  THE STATISTICAL THERMODYNAMICS OF EQUILIBRIUM , 1963 .

[95]  M. Fisher,et al.  Decay of Correlations in Linear Systems , 1969 .

[96]  H. Meyer,et al.  Equation of state and critical exponents ofHe3and aHe3-He4mixture near their liquid-vapor critical point , 1979 .

[97]  Bjarne Andresen,et al.  Quasistatic processes as step equilibrations , 1985 .

[98]  Peter Salamon,et al.  On the relation between entropy and energy versions of thermodynamic length , 1984 .

[99]  G. Ruppeiner,et al.  Thermodynamics: A Riemannian geometric model , 1979 .

[100]  Michael F. Wehner,et al.  Numerical evaluation of path-integral solutions to Fokker-Planck equations. II. Restricted stochastic processes , 1983 .

[101]  M. Peterson Analogy between thermodynamics and mechanics , 1979 .

[102]  H. Janyszek,et al.  Riemannian geometry and stability of ideal quantum gases , 1990 .

[103]  H. Janyszek Riemannian geometry and stability of thermodynamical equilibrium systems , 1990 .

[104]  Zijun Yan,et al.  Fluctuations of thermodynamic quantities calculated from the fundamental equation of thermodynamics , 1992 .

[105]  Adriaans,et al.  Temperature fluctuations in the canonical ensemble. , 1992, Physical review letters.

[106]  H. Dekker Functional integration anti the Onsager-Machlup Lagrangian for continuous Markov processes in Riemannian geometries , 1979 .

[107]  M. Fisher,et al.  Classifying first-order phase transitions , 1986 .

[108]  F. Gürsey,et al.  Classical statistical mechanics of a rectilinear assembly , 1950, Mathematical Proceedings of the Cambridge Philosophical Society.

[109]  M. Smoluchowski Molekular-kinetische Theorie der Opaleszenz von Gasen im kritischen Zustande, sowie einiger verwandter Erscheinungen , 1908 .

[110]  J. L. Sengers,et al.  From Van der Waals' equation to the scaling laws , 1974 .

[111]  A. Compagner Thermodynamics as the continuum limit of statistical mechanics , 1989 .