Efficient Reconstruction of Functions on the Sphere from Scattered Data

Motivated by the fact that most data collected over the surface of the earth is available at scattered nodes only, the least squares approximation and interpolation of such data has attracted much attention, see e.g. [1, 2, 5]. The most prominent approaches rely on so-called zonal basis function methods [16] or on finite expansions into spherical harmonics [12, 14]. We focus on the latter, i.e., the use of spherical polynomials since these allow for the application of the fast spherical Fourier transform, see for example [8, 9] and the references therein. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  K. Gröchenig RECONSTRUCTION ALGORITHMS IN IRREGULAR SAMPLING , 1992 .

[2]  Jürgen Prestin,et al.  On a constructive representation of an orthogonal trigonometric Schauder basis for C 2π , 2001 .

[3]  Daniel Potts,et al.  Fast evaluation of quadrature formulae on the sphere , 2008, Math. Comput..

[4]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[5]  Hrushikesh Narhar Mhaskar,et al.  Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature , 2001, Math. Comput..

[6]  Woula Themistoclakis,et al.  Polynomial approximation on the sphere using scattered data , 2008 .

[7]  Giuseppe Mastroianni,et al.  Weighted Polynomial Inequalities with Doubling and A∞ Weights , 2000 .

[8]  E. Saff,et al.  Distributing many points on a sphere , 1997 .

[9]  Ian H. Sloan,et al.  Extremal Systems of Points and Numerical Integration on the Sphere , 2004, Adv. Comput. Math..

[10]  Stefan Kunis,et al.  Efficient Reconstruction of Functions on the Sphere from Scattered Data , 2007 .

[11]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[12]  Kurt Jetter,et al.  Error estimates for scattered data interpolation on spheres , 1999, Math. Comput..

[13]  Stefan Kunis,et al.  Stability Results for Scattered Data Interpolation by Trigonometric Polynomials , 2007, SIAM J. Sci. Comput..

[14]  Volker Schönefeld Spherical Harmonics , 2019, An Introduction to Radio Astronomy.

[15]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[16]  L. Schumaker,et al.  Scattered data fitting on the sphere , 1998 .

[17]  Robert J. Renka,et al.  Algorithm 772: STRIPACK: Delaunay triangulation and Voronoi diagram on the surface of a sphere , 1997, TOMS.

[18]  Philip Crotwell Constructive Approximation on the Sphere , 2000 .

[19]  Stefan Kunis,et al.  Fast spherical Fourier algorithms , 2003 .

[20]  T. Strohmer,et al.  Efficient numerical methods in non-uniform sampling theory , 1995 .

[21]  Manfred Reimer,et al.  Multivariate Polynomial Approximation , 2003 .

[22]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[23]  N. Sivakumar,et al.  Stability results for scattered‐data interpolation on Euclidean spheres , 1998, Adv. Comput. Math..