The volume of separable states is super-doubly-exponentially small
暂无分享,去创建一个
[1] P. Slater. The silver mean and volumes of the separable two-qubit states , 2003 .
[2] H. Sommers,et al. Bures volume of the set of mixed quantum states , 2003, quant-ph/0304041.
[3] L. Gurvits,et al. Separable balls around the maximally mixed multipartite quantum states , 2003, quant-ph/0302102.
[4] R. Jozsa,et al. On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[5] Uniwersytet Jagiello,et al. Hilbert-Schmidt volume of the set of mixed quantum states , 2003 .
[6] S. Thorbjørnsen,et al. Random matrices with complex Gaussian entries , 2003 .
[7] Michel Ledoux,et al. A Remark on Hypercontractivity and Tail Inequalities for the Largest Eigenvalues of Random Matrices , 2003 .
[8] M. Horodecki,et al. Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments , 2002 .
[9] M. Horodecki,et al. Mixed-State Entanglement and Quantum Communication , 2001, quant-ph/0109124.
[10] A. O. Pittenger,et al. Convexity and the separability problem of quantum mechanical density matrices , 2001, quant-ph/0103038.
[11] G. Milburn,et al. Qudit Entanglement , 2000, quant-ph/0001075.
[12] Complete separability and Fourier representations of n-qubit states , 1999, quant-ph/9912116.
[13] R. Jozsa,et al. SEPARABILITY OF VERY NOISY MIXED STATES AND IMPLICATIONS FOR NMR QUANTUM COMPUTING , 1998, quant-ph/9811018.
[14] M. Lewenstein,et al. On the volume of the set of mixed entangled states II , 1999, quant-ph/9902050.
[15] C. Tracy,et al. On orthogonal and symplectic matrix ensembles , 1995, solv-int/9509007.
[16] M. Ledoux,et al. Isoperimetry and Gaussian analysis , 1996 .
[17] S. Braunstein,et al. Statistical distance and the geometry of quantum states. , 1994, Physical review letters.
[18] C. Tracy,et al. Level-spacing distributions and the Airy kernel , 1992, hep-th/9210074.
[19] B. Bollobás. THE VOLUME OF CONVEX BODIES AND BANACH SPACE GEOMETRY (Cambridge Tracts in Mathematics 94) , 1991 .
[20] G. Pisier. The volume of convex bodies and Banach space geometry , 1989 .
[21] V. Milman,et al. New volume ratio properties for convex symmetric bodies in ℝn , 1987 .
[22] Jean Saint Raymond,et al. Le volume des idéaux d'opérateurs classiques , 1984 .
[23] Nicole Tomczak-Jaegermann,et al. On nearly euclidean decomposition for some classes of Banach spaces , 1980 .
[24] G. C. Shephard,et al. Convex Bodies Associated with a Given Convex Body , 1958 .
[25] G. C. Shephard,et al. The difference body of a convex body , 1957 .