Azilsartan Decreases Renal and Cardiovascular Injury in the Spontaneously Hypertensive Obese Rat

[1]  Y. Takeishi,et al.  New angiotensin II type 1 receptor blocker, azilsartan, attenuates cardiac remodeling after myocardial infarction. , 2013, Biological & pharmaceutical bulletin.

[2]  M. Maeda,et al.  Novel Mechanism for Disrupted Circadian Blood Pressure Rhythm in a Rat Model of Metabolic Syndrome—The Critical Role of Angiotensin II , 2013, Journal of the American Heart Association.

[3]  B. Sobel,et al.  The Efficacy and Tolerability of Azilsartan in Mice With Left Ventricular Pressure Overload or Acute Myocardial Infarction , 2013, Journal of cardiovascular pharmacology.

[4]  E. Frohlich,et al.  Telmisartan Prevents Excess-Salt-Induced Exacerbated (Malignant) Hypertension in Spontaneously Hypertensive Rats , 2013, Journal of cardiovascular pharmacology and therapeutics.

[5]  S. Shaw,et al.  Soluble epoxide hydrolase inhibition and peroxisome proliferator activated receptor γ agonist improve vascular function and decrease renal injury in hypertensive obese rats , 2012, Experimental biology and medicine.

[6]  M. Volpe,et al.  New treatment options in the management of hypertension: appraising the potential role of azilsartan medoxomil , 2012, Integrated Blood Pressure Control.

[7]  T. Kurtz,et al.  Differential pharmacology and benefit/risk of azilsartan compared to other sartans , 2012, Vascular health and risk management.

[8]  T. Kurtz,et al.  Molecular and cellular effects of azilsartan: a new generation angiotensin II receptor blocker , 2011, Journal of hypertension.

[9]  T. Tomita,et al.  Azilsartan treatment improves insulin sensitivity in obese spontaneously hypertensive Koletsky rats , 2011, Diabetes, obesity & metabolism.

[10]  W. White,et al.  Azilsartan Medoxomil: A New Angiotensin II Receptor Antagonist for Treatment of Hypertension , 2011, The Annals of pharmacotherapy.

[11]  K. Kusumoto,et al.  Antihypertensive, insulin-sensitising and renoprotective effects of a novel, potent and long-acting angiotensin II type 1 receptor blocker, azilsartan medoxomil, in rat and dog models. , 2011, European journal of pharmacology.

[12]  J. Imig,et al.  Telmisartan provides better renal protection than valsartan in a rat model of metabolic syndrome. , 2011, American journal of hypertension.

[13]  K. Kusumoto,et al.  In Vitro Antagonistic Properties of a New Angiotensin Type 1 Receptor Blocker, Azilsartan, in Receptor Binding and Function Studies , 2011, Journal of Pharmacology and Experimental Therapeutics.

[14]  G. Bakris,et al.  Effects of the Angiotensin Receptor Blocker Azilsartan Medoxomil Versus Olmesartan and Valsartan on Ambulatory and Clinic Blood Pressure in Patients With Stages 1 and 2 Hypertension , 2011, Hypertension.

[15]  G. Bakris,et al.  The Comparative Effects of Azilsartan Medoxomil and Olmesartan on Ambulatory and Clinic Blood Pressure , 2011, Journal of clinical hypertension.

[16]  T. Tomita,et al.  Irbesartan treatment up‐regulates hepatic expression of PPARα and its target genes in obese Koletsky (fak/fak) rats: a link to amelioration of hypertriglyceridaemia , 2010, British journal of pharmacology.

[17]  C. Ecelbarger,et al.  The Effect of Chronic Candesartan Therapy on the Metabolic Profile and Renal Tissue Cytokine Levels in the Obese Zucker Rat , 2010, Mediators of inflammation.

[18]  Yu Lin,et al.  Additive Effect of TAK-491, a New Angiotensin Receptor Blocker, and Pioglitazone, in Reducing Myocardial Infarct Size , 2010, Cardiovascular Drugs and Therapy.

[19]  S. Keller,et al.  Valsartan Protects Pancreatic Islets and Adipose Tissue From the Inflammatory and Metabolic Consequences of a High-Fat Diet in Mice , 2010, Hypertension.

[20]  D. Mikhailidis,et al.  Endothelial dysfunction in metabolic syndrome: prevalence, pathogenesis and management. , 2010, Nutrition, metabolism, and cardiovascular diseases : NMCD.

[21]  J. Imig,et al.  Obesity is the major contributor to vascular dysfunction and inflammation in high-fat diet hypertensive rats. , 2009, Clinical science.

[22]  S. Proctor,et al.  Irbesartan‐mediated reduction of renal and cardiac damage in insulin resistant JCR : LA‐cp rats , 2009, British journal of pharmacology.

[23]  H. Kiyomoto,et al.  Angiotensin II receptor blocker is a renoprotective remedy for metabolic syndrome , 2009, Hypertension Research.

[24]  J. Fruchart Peroxisome proliferator-activated receptor-alpha (PPARalpha): at the crossroads of obesity, diabetes and cardiovascular disease. , 2009, Atherosclerosis.

[25]  M. Mogi,et al.  Inhibition of the renin–angiotensin system and target organ protection , 2009, Hypertension Research.

[26]  M. Weir The Renoprotective Effects of RAS Inhibition: Focus on Prevention and Treatment of Chronic Kidney Disease , 2009, Postgraduate medicine.

[27]  D. Cha,et al.  Angiotensin receptor blockers improve insulin resistance in type 2 diabetic rats by modulating adipose tissue. , 2008, Kidney international.

[28]  L. Appel,et al.  Metabolic syndrome, proteinuria, and the risk of progressive CKD in hypertensive African Americans. , 2008, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[29]  R. Negro Endothelial effects of antihypertensive treatment: focus on irbesartan , 2008, Vascular health and risk management.

[30]  E. Frohlich,et al.  AT1 receptor antagonism attenuates target organ effects of salt excess in SHRs without affecting pressure. , 2008, American journal of physiology. Heart and circulatory physiology.

[31]  P. Ernsberger,et al.  Therapeutic actions of allylmercaptocaptopril and captopril in a rat model of metabolic syndrome. , 2007, American journal of hypertension.

[32]  J. Imig,et al.  Obesity, Insulin Resistance, and Renal Function , 2007, Microcirculation.

[33]  L. Lerman,et al.  Early experimental obesity is associated with coronary endothelial dysfunction and oxidative stress. , 2007, American journal of physiology. Heart and circulatory physiology.

[34]  Martin Paul,et al.  Physiology of local renin-angiotensin systems. , 2006, Physiological reviews.

[35]  R. Zatz,et al.  Statin Monotherapy Attenuates Renal Injury in a Salt-Sensitive Hypertension Model of Renal Disease , 2005, Nephron Physiology.

[36]  R. Krauss,et al.  Diagnosis and Management of the Metabolic Syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement , 2005, Current opinion in cardiology.

[37]  Fernando Costa,et al.  Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. , 2005, Circulation.

[38]  A. Scheen,et al.  Management of the metabolic syndrome. , 2004, Minerva endocrinologica.

[39]  Toshio Sada,et al.  Renoprotective effects of blockade of angiotensin II AT1 receptors in an animal model of type 2 diabetes. , 2002, Hypertension research : official journal of the Japanese Society of Hypertension.

[40]  U. Laufs,et al.  HMG-CoA Reductase Inhibitors Improve Endothelial Dysfunction in Normocholesterolemic Hypertension via Reduced Production of Reactive Oxygen Species , 2001, Hypertension.

[41]  P. Ernsberger,et al.  Molecular Pathology in the Obese Spontaneous Hypertensive Koletsky Rat: A Model of Syndrome X , 1999, Annals of the New York Academy of Sciences.

[42]  E. Imamiya,et al.  Synthesis and angiotensin II receptor antagonistic activities of benzimidazole derivatives bearing acidic heterocycles as novel tetrazole bioisosteres. , 1996, Journal of medicinal chemistry.

[43]  R. Purves,et al.  Optimum numerical integration methods for estimation of area-under-the-curve (AUC) and area-under-the-moment-curve (AUMC) , 1992, Journal of Pharmacokinetics and Biopharmaceutics.

[44]  S. Koletsky Pathologic findings and laboratory data in a new strain of obese hypertensive rats. , 1975, The American journal of pathology.

[45]  T. Ishimitsu,et al.  Year-long antihypertensive therapy with candesartan completely prevents development of cardiovascular organ injuries in spontaneously hypertensive rats. , 2010, International heart journal.

[46]  M. Pugsley The angiotensin-II (AT-II) receptor blocker olmesartan reduces renal damage in animal models of hypertension and diabetes. , 2005, Proceedings of the Western Pharmacology Society.