Algorithmic and Enumerative Aspects of the Moser-Tardos Distribution
暂无分享,去创建一个
[1] Jeffrey Shallit,et al. Avoiding Approximate Squares , 2007, Developments in Language Theory.
[2] Jaroslaw Grytczuk,et al. Nonrepetitive Colorings of Graphs - A Survey , 2007, Int. J. Math. Math. Sci..
[3] Noam Nisan,et al. Randomness is Linear in Space , 1996, J. Comput. Syst. Sci..
[4] Wesley Pegden,et al. An Extension of the Moser-Tardos Algorithmic Local Lemma , 2011, SIAM J. Discret. Math..
[5] Michael Luby,et al. A simple parallel algorithm for the maximal independent set problem , 1985, STOC '85.
[6] Aravind Srinivasan,et al. Improved bounds and algorithms for hypergraph two-coloring , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[7] David R. Wood,et al. Nonrepetitive colouring via entropy compression , 2011, Comb..
[8] Jarosław Grytczuk,et al. Nonrepetitive Graph Coloring , 2006 .
[9] Aravind Srinivasan,et al. A constructive algorithm for the Lovász Local Lemma on permutations , 2014, SODA.
[10] Aldo Procacci,et al. An Improvement of the Lovász Local Lemma via Cluster Expansion , 2009, Combinatorics, Probability and Computing.
[11] N. Alon. The linear arboricity of graphs , 1988 .
[12] Noga Alon,et al. Breaking the rhythm on graphs , 2008, Discret. Math..
[13] Linyuan Lu,et al. A new asymptotic enumeration technique: the Lovasz Local Lemma , 2009, 0905.3983.
[14] Larry Carter,et al. Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..
[15] Noga Alon,et al. The Probabilistic Method, Third Edition , 2008, Wiley-Interscience series in discrete mathematics and optimization.
[16] Oded Goldreich,et al. Unbiased Bits from Sources of Weak Randomness and Probabilistic Communication Complexity , 1988, SIAM J. Comput..
[17] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[18] Gábor Tardos,et al. The local lemma is tight for SAT , 2010, SODA '11.
[19] Bernhard Haeupler,et al. Parallel Algorithms and Concentration Bounds for the Lovász Local Lemma via Witness DAGs , 2015, SODA.
[20] Endre Szemerédi,et al. On complete subgraphs of r-chromatic graphs , 1975, Discret. Math..
[21] Noga Alon,et al. Nonrepetitive colorings of graphs , 2002, Random Struct. Algorithms.
[22] David G. Harris. Lopsidependency in the Moser-Tardos framework: Beyond the Lopsided Lovász Local Lemma , 2015, SODA.
[23] Jan Vondrák,et al. An Algorithmic Proof of the Lovasz Local Lemma via Resampling Oracles , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.
[24] Michael Krivelevich,et al. Deciding k-colorability in expected polynomial time , 2002, Inf. Process. Lett..
[25] Dimitris Achlioptas,et al. Random Walks That Find Perfect Objects and the Lovasz Local Lemma , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.
[26] Salil P. Vadhan,et al. Pseudorandomness , 2012, Found. Trends Theor. Comput. Sci..
[27] K. Mahler. An inequality for the discriminant of a polynomial. , 1964 .
[28] David Zuckerman,et al. Explicit two-source extractors and resilient functions , 2016, Electron. Colloquium Comput. Complex..
[29] Dániel Marx,et al. The complexity of nonrepetitive coloring , 2009, Discret. Appl. Math..
[30] Jakub Kozik,et al. A note on random greedy coloring of uniform hypergraphs , 2013, Random Struct. Algorithms.
[31] Paul Erdös,et al. Lopsided Lovász Local Lemma and Latin transversals , 1991, Discret. Appl. Math..
[32] Joel H. Spencer,et al. Asymptotic lower bounds for Ramsey functions , 1977, Discret. Math..
[33] Richard A. Brualdi,et al. Combinatorial matrix theory , 1991 .
[34] Gil Cohen,et al. Two-source dispersers for polylogarithmic entropy and improved ramsey graphs , 2015, Electron. Colloquium Comput. Complex..
[35] Gábor Tardos,et al. A constructive proof of the general lovász local lemma , 2009, JACM.
[36] Jan Vondrák,et al. An Algorithmic Proof of the Lopsided Lovász Local Lemma ( simplified and condensed into lecture notes ) , 2015 .
[37] Bernhard Haeupler,et al. Improved bounds and parallel algorithms for the Lovasz Local Lemma , 2015, ArXiv.
[38] Aravind Srinivasan,et al. New Constructive Aspects of the Lovasz Local Lemma , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.
[39] Aravind Srinivasan,et al. Improved bounds and algorithms for hypergraph 2-coloring , 2000, Random Struct. Algorithms.
[40] Larry Carter,et al. Universal classes of hash functions (Extended Abstract) , 1977, STOC '77.
[41] Linyuan LuLaszlo Szekely. A new asymptotic enumeration technique: the , 2011 .
[42] Pooya Hatami,et al. A lower bound for the length of a partial transversal in a Latin square , 2008, J. Comb. Theory, Ser. A.
[43] S. Stein. TRANSVERSALS OF LATIN SQUARES AND THEIR GENERALIZATIONS , 1975 .
[44] Stanislav Jendrol',et al. Nonrepetitive vertex colorings of graphs , 2012, Discret. Math..
[45] Rune B. Lyngsø,et al. Lecture Notes I , 2008 .