Algorithmic and Enumerative Aspects of the Moser-Tardos Distribution

Moser and Tardos have developed a powerful algorithmic approach (henceforth MT) to the Lovász Local Lemma (LLL); the basic operation done in MT and its variants is a search for “bad” events in a current configuration. In the initial stage of MT, the variables are set independently. We examine the distributions on these variables that arise during intermediate stages of MT. We show that these configurations have a more or less “random” form, building further on the MT-distribution concept of Haeupler et al. in understanding the (intermediate and) output distribution of MT. This has a variety of algorithmic applications; the most important is that bad events can be found relatively quickly, improving on MT across the complexity spectrum. It makes some polynomial-time algorithms sublinear (e.g., for Latin transversals, which are of basic combinatorial interest), gives lower-degree polynomial runtimes in some settings, transforms certain superpolynomial-time algorithms into polynomial-time algorithms, and leads to Las Vegas algorithms for some coloring problems for which only Monte Carlo algorithms were known. We show that, in certain conditions when the LLL condition is violated, a variant of the MT algorithm can still produce a distribution that avoids most of the bad events. We show in some cases that this MT variant can run faster than the original MT algorithm itself and develop the first-known criterion for the case of the asymmetric LLL. This can be used to find partial Latin transversals—improving on earlier bounds of Stein (1975)—among other applications. We furthermore give applications in enumeration, showing that most applications (for which we aim for all or most of the bad events to be avoided) have large solution sets. We do this by showing that the MT distribution has large Rényi entropy.

[1]  Jeffrey Shallit,et al.  Avoiding Approximate Squares , 2007, Developments in Language Theory.

[2]  Jaroslaw Grytczuk,et al.  Nonrepetitive Colorings of Graphs - A Survey , 2007, Int. J. Math. Math. Sci..

[3]  Noam Nisan,et al.  Randomness is Linear in Space , 1996, J. Comput. Syst. Sci..

[4]  Wesley Pegden,et al.  An Extension of the Moser-Tardos Algorithmic Local Lemma , 2011, SIAM J. Discret. Math..

[5]  Michael Luby,et al.  A simple parallel algorithm for the maximal independent set problem , 1985, STOC '85.

[6]  Aravind Srinivasan,et al.  Improved bounds and algorithms for hypergraph two-coloring , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[7]  David R. Wood,et al.  Nonrepetitive colouring via entropy compression , 2011, Comb..

[8]  Jarosław Grytczuk,et al.  Nonrepetitive Graph Coloring , 2006 .

[9]  Aravind Srinivasan,et al.  A constructive algorithm for the Lovász Local Lemma on permutations , 2014, SODA.

[10]  Aldo Procacci,et al.  An Improvement of the Lovász Local Lemma via Cluster Expansion , 2009, Combinatorics, Probability and Computing.

[11]  N. Alon The linear arboricity of graphs , 1988 .

[12]  Noga Alon,et al.  Breaking the rhythm on graphs , 2008, Discret. Math..

[13]  Linyuan Lu,et al.  A new asymptotic enumeration technique: the Lovasz Local Lemma , 2009, 0905.3983.

[14]  Larry Carter,et al.  Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..

[15]  Noga Alon,et al.  The Probabilistic Method, Third Edition , 2008, Wiley-Interscience series in discrete mathematics and optimization.

[16]  Oded Goldreich,et al.  Unbiased Bits from Sources of Weak Randomness and Probabilistic Communication Complexity , 1988, SIAM J. Comput..

[17]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[18]  Gábor Tardos,et al.  The local lemma is tight for SAT , 2010, SODA '11.

[19]  Bernhard Haeupler,et al.  Parallel Algorithms and Concentration Bounds for the Lovász Local Lemma via Witness DAGs , 2015, SODA.

[20]  Endre Szemerédi,et al.  On complete subgraphs of r-chromatic graphs , 1975, Discret. Math..

[21]  Noga Alon,et al.  Nonrepetitive colorings of graphs , 2002, Random Struct. Algorithms.

[22]  David G. Harris Lopsidependency in the Moser-Tardos framework: Beyond the Lopsided Lovász Local Lemma , 2015, SODA.

[23]  Jan Vondrák,et al.  An Algorithmic Proof of the Lovasz Local Lemma via Resampling Oracles , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[24]  Michael Krivelevich,et al.  Deciding k-colorability in expected polynomial time , 2002, Inf. Process. Lett..

[25]  Dimitris Achlioptas,et al.  Random Walks That Find Perfect Objects and the Lovasz Local Lemma , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[26]  Salil P. Vadhan,et al.  Pseudorandomness , 2012, Found. Trends Theor. Comput. Sci..

[27]  K. Mahler An inequality for the discriminant of a polynomial. , 1964 .

[28]  David Zuckerman,et al.  Explicit two-source extractors and resilient functions , 2016, Electron. Colloquium Comput. Complex..

[29]  Dániel Marx,et al.  The complexity of nonrepetitive coloring , 2009, Discret. Appl. Math..

[30]  Jakub Kozik,et al.  A note on random greedy coloring of uniform hypergraphs , 2013, Random Struct. Algorithms.

[31]  Paul Erdös,et al.  Lopsided Lovász Local Lemma and Latin transversals , 1991, Discret. Appl. Math..

[32]  Joel H. Spencer,et al.  Asymptotic lower bounds for Ramsey functions , 1977, Discret. Math..

[33]  Richard A. Brualdi,et al.  Combinatorial matrix theory , 1991 .

[34]  Gil Cohen,et al.  Two-source dispersers for polylogarithmic entropy and improved ramsey graphs , 2015, Electron. Colloquium Comput. Complex..

[35]  Gábor Tardos,et al.  A constructive proof of the general lovász local lemma , 2009, JACM.

[36]  Jan Vondrák,et al.  An Algorithmic Proof of the Lopsided Lovász Local Lemma ( simplified and condensed into lecture notes ) , 2015 .

[37]  Bernhard Haeupler,et al.  Improved bounds and parallel algorithms for the Lovasz Local Lemma , 2015, ArXiv.

[38]  Aravind Srinivasan,et al.  New Constructive Aspects of the Lovasz Local Lemma , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[39]  Aravind Srinivasan,et al.  Improved bounds and algorithms for hypergraph 2-coloring , 2000, Random Struct. Algorithms.

[40]  Larry Carter,et al.  Universal classes of hash functions (Extended Abstract) , 1977, STOC '77.

[41]  Linyuan LuLaszlo Szekely A new asymptotic enumeration technique: the , 2011 .

[42]  Pooya Hatami,et al.  A lower bound for the length of a partial transversal in a Latin square , 2008, J. Comb. Theory, Ser. A.

[43]  S. Stein TRANSVERSALS OF LATIN SQUARES AND THEIR GENERALIZATIONS , 1975 .

[44]  Stanislav Jendrol',et al.  Nonrepetitive vertex colorings of graphs , 2012, Discret. Math..

[45]  Rune B. Lyngsø,et al.  Lecture Notes I , 2008 .