A Simple Linear Time Algorithm for the Isomorphism Problem on Proper Circular-Arc Graphs

A circular-arc model $ {\mathcal {M}} =(C,\mathcal{A})$ is a circle Ctogether with a collection $\mathcal{A}$ of arcs of C. If no arc is contained in any other then $\mathcal{M}$ is a proper circular-arc model, and if some point of Cis not covered by any arc then ${\mathcal{M}}$ is an interval model. A (proper) (interval) circular-arc graph is the intersection graph of a (proper) (interval) circular-arc model. Circular-arc graphs and their subclasses have been the object of a great deal of attention in the literature. Linear time recognition algorithms have been described both for the general class and for some of its subclasses. For the isomorphism problem, there exists a polynomial time algorithm for the general case, and a linear time algorithm for interval graphs. In this work we develop a linear time algorithm for the isomorphism problem in proper circular-arc graphs, based on uniquely encoding a proper circular-arc model. Our method relies on results about uniqueness of certain PCA models, developed by Deng, Hell and Huang in [6]. The algorithm is easy to code and uses only basic tools available in almost every programming language.

[1]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[2]  Jayme Luiz Szwarcfiter,et al.  Unit Circular-Arc Graph Representations and Feasible Circulations , 2008, SIAM J. Discret. Math..

[3]  Wen-Lian Hsu O(M*N) Algorithms for the Recognition and Isomorphism Problems on Circular-Arc Graphs , 1995, SIAM J. Comput..

[4]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[5]  Jayme Luiz Szwarcfiter,et al.  Proper Helly Circular-Arc Graphs , 2007, WG.

[6]  Xiaotie Deng,et al.  Linear-Time Representation Algorithms for Proper Circular-Arc Graphs and Proper Interval Graphs , 1996, SIAM J. Comput..

[7]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[8]  Lars Arge,et al.  Algorithm Theory - SWAT 2006, 10th ScandinavianWorkshop on Algorithm Theory, Riga, Latvia, July 6-8, 2006, Proceedings , 2006, SWAT.

[9]  Stephan Olariu,et al.  The ultimate interval graph recognition algorithm? , 1998, SODA '98.

[10]  Jeremy P. Spinrad,et al.  Efficient graph representations , 2003, Fields Institute monographs.

[11]  Haim Kaplan,et al.  Certifying Algorithms for Recognizing Proper Circular-Arc Graphs and Unit Circular-Arc Graphs , 2006, WG.

[12]  Haim Kaplan,et al.  A Simpler Linear-Time Recognition of Circular-Arc Graphs , 2006, SWAT.

[13]  Ross M. McConnell,et al.  Linear-Time Recognition of Circular-Arc Graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[14]  Peter L. Hammer,et al.  Difference graphs , 1990, Discret. Appl. Math..

[15]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[16]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[17]  Haim Kaplan,et al.  Certifying algorithms for recognizing proper circular-arc graphs and unit circular-arc graphs , 2009, Discret. Appl. Math..

[18]  Jayme Luiz Szwarcfiter,et al.  Linear-Time Recognition of Helly Circular-Arc Models and Graphs , 2011, Algorithmica.

[19]  Rolf H. Möhring,et al.  An Incremental Linear-Time Algorithm for Recognizing Interval Graphs , 1989, SIAM J. Comput..

[20]  Kellogg S. Booth,et al.  Lexicographically Least Circular Substrings , 1980, Inf. Process. Lett..

[21]  Kellogg S. Booth,et al.  A Linear Time Algorithm for Deciding Interval Graph Isomorphism , 1979, JACM.

[22]  Laurent Viennot,et al.  Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing , 2000, Theor. Comput. Sci..

[23]  Yossi Shiloach,et al.  Fast Canonization of Circular Strings , 1981, J. Algorithms.

[24]  Stephan Olariu,et al.  The Ultimate Interval Graph Recognition Algorithm? (Extended Abstract). , 1998, ACM-SIAM Symposium on Discrete Algorithms.

[25]  Pavol Hell,et al.  A Linear Algorithm for Maximum Weight Cliques in Proper Circular Arc Graphs , 1996, SIAM J. Discret. Math..

[26]  Wen-Lian Hsu,et al.  A Simple Test for Interval Graphs , 1992, WG.