A Framework for Semi-Automated Generation of a Virtual Combine Harvester

[1]  O. Nelles Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models , 2000 .

[2]  R. Hübner,et al.  Numerische Untersuchung der Luftströmung in der Reinigungseinrichtung von Mähdreschern , 2013 .

[3]  H. D. Kutzbach Approaches for mathematical modelling of grain separation , 2003 .

[4]  Josse De Baerdemaeker,et al.  Identification of the cleaning process on combine harvesters. Part I: A fuzzy model for prediction of the material other than grain (MOG) content in the grain bin , 2008 .

[5]  Josse De Baerdemaeker,et al.  A genetic input selection methodology for identification of the cleaning process on a combine harvester, Part I: Selection of relevant input variables for identification of the sieve losses , 2007 .

[6]  J. De Baerdemaeker,et al.  FLOW RATE BASED PREDICTION OF THRESHING PROCESS IN COMBINE HARVESTERS , 2003 .

[7]  Jeffrey D. Kelly,et al.  A Steady-State Detection (SSD) Algorithm to Detect Non-Stationary Drifts in Processes , 2013 .

[8]  Josse De Baerdemaeker,et al.  A genetic input selection methodology for identification of the cleaning process on a combine harvester, Part II: Selection of relevant input variables for identification of material other than grain (MOG) content in the grain bin , 2007 .

[9]  Josse De Baerdemaeker,et al.  Identification of the cleaning process on combine harvesters, Part II: A fuzzy model for prediction of the sieve losses , 2010 .

[10]  P. I. Miu,et al.  STOCHASTIC MODELING OF SEPARATION PROCESS ON COMBINE CLEANING SHOE , 2003 .