Data-driven smooth tests for the martingale difference hypothesis

A general method for testing the martingale difference hypothesis is proposed. The new tests are data-driven smooth tests based on the principal components of certain marked empirical processes that are asymptotically distribution-free, with critical values that are already tabulated. The smooth tests are shown to be optimal in a semiparametric sense discussed in the paper, and they are robust to conditional heteroscedasticity of unknown form. A simulation study shows that the data-driven smooth tests perform very well for a wide range of realistic alternatives and have more power than omnibus and other competing tests. Finally, an application to the S&P 500 stock index and some of its components highlights the merits of our approach. The paper also contains a new weak convergence theorem that is of independent interest.

[1]  John C. W. Rayner,et al.  Smooth test of goodness of fit , 1989 .

[2]  Myron N. Chang Weak Convergence of a Self-Consistent Estimator of the Survival Function with Doubly Censored Data , 1990 .

[3]  J. Carlos Escanciano,et al.  ON THE LACK OF POWER OF OMNIBUS SPECIFICATION TESTS , 2009, Econometric Theory.

[4]  A DATA-DRIVEN NONPARAMETRIC SPECIFICATION TEST FOR DYNAMIC REGRESSION MODELS , 2006, Econometric Theory.

[5]  J. Carlos Escanciano,et al.  Generalized spectral tests for the martingale difference hypothesis , 2006 .

[6]  James Durbin,et al.  Components of Cramer-von Mises statistics. I , 1972 .

[7]  G. Claeskens,et al.  Testing lack of fit in multiple regression , 2000 .

[8]  Alan T. K. Wan,et al.  Handbook of applied econometrics and statistical inference , 2002 .

[9]  Ignacio N. Lobato,et al.  An Automatic Portmanteau Test for Serial Correlation , 2009 .

[10]  Ignacio N. Lobato,et al.  A Consistent Test for the Martingale Difference Hypothesis , 2001 .

[11]  Ignacio N. Lobato,et al.  Testing the Martingale Hypothesis , 2009 .

[12]  Miguel A. Delgado,et al.  Distribution Free Goodness-of-Fit Tests for Linear Processes , 2005, math/0603043.

[13]  Winfried Stute,et al.  Nonparametric model checks for regression , 1997 .

[14]  James A. Koziol,et al.  On a cramér‐von mises type statistic for testing bivariate independence , 1979 .

[15]  Testing for Differences Between Conditional Means in a Time Series Context , 2004 .

[16]  R. L. Eubank,et al.  Testing for No Effect by Cosine Series Methods , 2000 .

[17]  T. Ledwina,et al.  DATA DRIVEN SCORE TESTS OF FIT FOR A SEMIPARAMETRIC HOMOSCEDASTIC LINEAR REGRESSION MODEL , 2004 .

[18]  W. Stute,et al.  Model checks of higher order time series , 2006 .

[19]  William A. Barnett,et al.  Nonparametric and Semiparametric Methods in Econometrics and Statistics. , 1993 .

[20]  Ignacio N. Lobato,et al.  Testing the Martingale Difference Hypothesis , 2003 .

[21]  E. Khmaladze,et al.  Martingale Approach in the Theory of Goodness-of-Fit Tests , 1982 .

[22]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[23]  조재현 Goodness of fit tests for parametric regression models , 2004 .

[24]  David Hsieh Testing for Nonlinear Dependence in Daily Foreign Exchange Rates , 1989 .

[25]  W. Wefelmeyer Adaptive estimators for parameters of the autoregression function of a Markov chain , 1997 .

[26]  I. Grama,et al.  An Asymptotic Expansion for Probabilities of Moderate Deviations for Multivariate Martingales , 2006 .

[27]  Towards data driven selection of a penalty function for data driven Neyman tests , 2006 .

[28]  Lixing Zhu,et al.  Model Checks for Generalized Linear Models , 2002 .

[29]  Jeremy Berkowitz,et al.  Evaluating Value-at-Risk Models with Desk-Level Data , 2007, Manag. Sci..

[30]  Wilbert C.M. Kallenberg,et al.  Data-Driven Smooth Tests When the Hypothesis is Composite , 1997 .

[31]  Yoon-Jae Whang,et al.  A Test of the Martingale Hypothesis , 2005 .

[32]  K. Do,et al.  Efficient and Adaptive Estimation for Semiparametric Models. , 1994 .

[33]  E. Khmaladze,et al.  An innovation approach to goodness of fit tests in $R m$ , 1988 .

[34]  André Mas,et al.  Testing hypotheses in the functional linear model , 2003 .

[35]  P. Bickel Efficient and Adaptive Estimation for Semiparametric Models , 1993 .

[36]  G. Claeskens,et al.  Testing the Fit of a Parametric Function , 1999 .

[37]  Oliver Linton,et al.  The quantilogram: With an application to evaluating directional predictability , 2007 .

[38]  Denis Bosq,et al.  Linear Processes in Function Spaces , 2000 .

[39]  Rohit S. Deo,et al.  Spectral Tests of the Martingale Hypothesis Under Conditional Heteroscedasticity , 2000 .

[40]  Anil K. Bera,et al.  Neyman's Smooth Test and its Applications in Econometrics , 2001 .

[41]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[42]  S. Durlauf Spectral Based Testing of the Martingale Hypothesis , 1991 .

[43]  Hira L. Koul,et al.  Nonparametric model checks for time series , 1999 .

[44]  A. Gallant,et al.  On Fitting A Recalcitrant Series: The Pound/Dollar Exchange Rate, 1974- 83 , 1988 .

[45]  D. Freedman On Tail Probabilities for Martingales , 1975 .

[46]  Carlos Velasco,et al.  Testing the martingale difference hypothesis using integrated regression functions , 2006, Comput. Stat. Data Anal..

[47]  P. Billingsley,et al.  The Lindeberg-Lévy theorem for martingales , 1961 .

[48]  D. Bosq Linear Processes in Function Spaces: Theory And Applications , 2000 .

[49]  R. L. Eubank,et al.  Testing Goodness-of-Fit in Regression Via Order Selection Criteria , 1992 .

[50]  Lixing Zhu,et al.  Model checks for regression: an innovation process approach , 1998 .

[51]  Herold Dehling,et al.  Empirical Process Techniques for Dependent Data , 2002 .

[52]  Wilbert C.M. Kallenberg The penalty in data driven Neyman's tests , 2000 .

[53]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[54]  A. Janssen GLOBAL POWER FUNCTIONS OF GOODNESS OF FIT TESTS , 2000 .

[55]  J. Koziol On a Cramér-von Mises-Type Statistic for Testing Symmetry , 1980 .

[56]  J. Neyman »Smooth test» for goodness of fit , 1937 .

[57]  J. Carlos Escanciano,et al.  Goodness-of-Fit Tests for Linear and Nonlinear Time Series Models , 2006 .

[58]  Kerry Patterson,et al.  Palgrave Handbook of Econometrics , 2009 .

[59]  Juan Carlos Escanciano,et al.  Model Checks Using Residual Marked Empirical Processes , 2004 .

[60]  W. J. Hall,et al.  Asymptotically uniformly most powerful tests in parametric and semiparametric models , 1996 .

[61]  Jianqing Fan Test of Significance Based on Wavelet Thresholding and Neyman's Truncation , 1996 .

[62]  J. Carlos Escanciano,et al.  Backtesting Parametric Value-at-Risk With Estimation Risk , 2008 .

[63]  T. Ledwina Data-Driven Version of Neyman's Smooth Test of Fit , 1994 .

[64]  G. Box,et al.  Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models , 1970 .

[65]  Tadeusz Inglot,et al.  Asymptotic optimality of data-driven Neyman's tests for uniformity , 1996 .

[66]  Terry L King Smooth Tests of Goodness of Fit , 1991 .

[67]  R. Cook,et al.  Dimension reduction for conditional mean in regression , 2002 .

[68]  V. LaRiccia,et al.  Asymptotic Comparison of Cramer-von Mises and Nonparametric Function Estimation Techniques for Testing Goodness-of-Fit , 1992 .