Full tensor gravity gradiometry data inversion: Performance analysis of parallel computing algorithms

We apply reweighted inversion focusing to full tensor gravity gradiometry data using message-passing interface (MPI) and compute unified device architecture (CUDA) parallel computing algorithms, and then combine MPI with CUDA to formulate a hybrid algorithm. Parallel computing performance metrics are introduced to analyze and compare the performance of the algorithms. We summarize the rules for the performance evaluation of parallel algorithms. We use model and real data from the Vinton salt dome to test the algorithms. We find good match between model and real density data, and verify the high efficiency and feasibility of parallel computing algorithms in the inversion of full tensor gravity gradiometry data.

[1]  Lianghui Guo,et al.  GICUDA: A parallel program for 3D correlation imaging of large scale gravity and gravity gradiometry data on graphics processing units with CUDA , 2012, Comput. Geosci..

[2]  J. T. Smith,et al.  Magnetotelluric inversion for minimum structure , 1988 .

[3]  Chen Zhao Three-dimensional fast forward modeling and the inversion strategy for large scale gravity and gravimetry data based on GPU , 2012 .

[4]  Peter S. Pacheco An Introduction to Parallel Programming , 2011 .

[5]  Carlos Couder-Castañeda,et al.  TESLA GPUs versus MPI with OpenMP for the Forward Modeling of Gravity and Gravity Gradient of Large Prisms Ensemble , 2013, J. Appl. Math..

[6]  Kurt J. Marfurt,et al.  Development and Calibration of New 3-D Vector VSP Imaging Technology: Vinton Salt Dome, LA , 2004 .

[7]  K. Kubik,et al.  Compact gravity inversion , 1983 .

[8]  Michael S. Zhdanov,et al.  Focusing geophysical inversion images , 1999 .

[9]  Mark Pilkington,et al.  3-D Magnetic Data-space Inversion With Sparseness Constraints , 2008 .

[10]  D. Oldenburg,et al.  3-D inversion of gravity data , 1998 .

[11]  Douglas W. Oldenburg,et al.  3-D inversion of magnetic data , 1996 .

[12]  Robert M. Farber,et al.  CUDA Application Design and Development , 2011 .

[13]  Martin Cuma,et al.  Massively parallel regularized 3D inversion of potential fields on CPUs and GPUs , 2014, Comput. Geosci..

[14]  Michael S. Zhdanov,et al.  Three-dimensional regularized focusing inversion of gravity gradient tensor component data , 2004 .

[15]  Danian Huang,et al.  3D inversion of airborne gravity-gradiometry data using cokriging , 2014 .

[16]  Mark Pilkington,et al.  3D magnetic data-space inversion with sparseness constraints , 2009 .

[17]  A. Roberts,et al.  Massively parallel forward modeling of scalar and tensor gravimetry data , 2010, Comput. Geosci..

[18]  Stuart A. Hall,et al.  Structural Mapping of the Vinton Salt Dome, Louisiana, Using Gravity Gradiometry Data , 2011 .

[19]  Vanderlei C. Oliveira,et al.  3-D radial gravity gradient inversion , 2013 .

[20]  M. Zhdanov,et al.  3‐D magnetic inversion with data compression and image focusing , 2002 .

[21]  Gary D. Egbert,et al.  An efficient data-subspace inversion method for 2-D magnetotelluric data , 2000 .

[22]  Oleg Nikolaevich Portniaguine Image focusing and data compression in the solution of geophysical inverse problems , 1999 .

[23]  Mark Pilkington,et al.  3-D magnetic imaging using conjugate gradients , 1997 .