The asymptotic distributions of the largest entries of sample correlation matrices

Let X_n=(x_{ij}) be an n by p data matrix, where the n rows form a random sample of size n from a certain p-dimensional population distribution. Let R_n=(\rho_{ij}) be the p\times p sample correlation matrix of X_n; that is, the entry \rho_{ij} is the usual Pearson's correlation coefficient between the ith column of X_n and jth column of X_n. For contemporary data both n and p are large. When the population is a multivariate normal we study the test that H_0: the p variates of the population are uncorrelated. A test statistic is chosen as L_n=max_{i\ne j}|\rho_{ij}|. The asymptotic distribution of L_n is derived by using the Chen-Stein Poisson approximation method. Similar results for the non-Gaussian case are also derived.

[1]  Michel Loève,et al.  Probability Theory I , 1977 .

[2]  J. Hoffmann-jorgensen Sums of independent Banach space valued random variables , 1974 .

[3]  N. N. Amosova,et al.  Probabilities of moderate deviations , 1982 .

[4]  G. K. Eagleson,et al.  Poisson Convergence for Dissociated Statistics , 1984 .

[5]  C. O'Connor An introduction to multivariate statistical analysis: 2nd edn. by T. W. Anderson. 675 pp. Wiley, New York (1984) , 1987 .

[6]  L. Gordon,et al.  Two moments su ce for Poisson approx-imations: the Chen-Stein method , 1989 .

[7]  A. Shiryayev On Sums of Independent Random Variables , 1992 .

[8]  Z. Bai,et al.  Limit of the smallest eigenvalue of a large dimensional sample covariance matrix , 1993 .

[9]  Tiefeng Jiang,et al.  Complete convergence and almost sure convergence of weighted sums of random variables , 1995 .

[10]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[11]  T. Jiang Maxima of partial sums indexed by geometrical structures , 1999 .

[12]  Z. Bai METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .

[13]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[14]  A comparison of scores of two protein structures with foldings , 2002 .

[15]  Tiefeng Jiang,et al.  The limiting distributions of eigenvalues of sample correlation matrices , 2004 .

[16]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[17]  Tiefeng Jiang,et al.  Maxima of entries of Haar distributed matrices , 2005 .

[18]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.