Aerial images segmentation based on SVM

This paper gives an approach to integrate SVM with pyramid image and decision tree. Finally, the water boundary is modified in the snake method. Experiment results on aerial image show the feasibility of the proposed method.

[1]  Jon Atli Benediktsson,et al.  A new approach for the morphological segmentation of high-resolution satellite imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[2]  Junping Zhang,et al.  Classification of hyperspectral data using support vector machine , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[3]  Simon J. Perkins,et al.  Support vector machines for broad-area feature classification in remotely sensed images , 2001, SPIE Defense + Commercial Sensing.

[4]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[5]  W. Kinsner,et al.  Texture analysis and segmentation of images using fractals , 1999, Engineering Solutions for the Next Millennium. 1999 IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.99TH8411).

[6]  S. Fukuda,et al.  Support vector machine classification of land cover: application to polarimetric SAR data , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[7]  Hsi-Chia Hsin,et al.  Texture segmentation using modulated wavelet transform , 2000, IEEE Trans. Image Process..

[8]  Federico Girosi,et al.  Training support vector machines: an application to face detection , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Leen-Kiat Soh,et al.  Segmentation of satellite imagery of natural scenes using data mining , 1999, IEEE Trans. Geosci. Remote. Sens..

[10]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[11]  Fabio Roli,et al.  Support vector machines for remote sensing image classification , 2001, SPIE Remote Sensing.

[12]  Marti A. Hearst Trends & Controversies: Support Vector Machines , 1998, IEEE Intell. Syst..

[13]  J. A. Gualtieri,et al.  Support vector machines for classification of hyperspectral data , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[14]  Joachim M. Buhmann,et al.  Support vector machines for land usage classification in Landsat TM imagery , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[15]  J. Anthony Gualtieri,et al.  Support vector machines for hyperspectral remote sensing classification , 1999, Other Conferences.