Perspectives of crystalline Si thin film solar cells: a new era of thin monocrystalline Si films?

A large number of competing approaches are currently being investigated around the world to develop crystalline silicon thin film solar cells on foreign substrates. These approaches can be broadly classified according to the crystalline state of the Si films employed: (i) thin film solar cells based on nano- or microcrystalline Si-films; (ii) cells fabricated from large-grained polycrystalline Si and (iii) recent approaches utilizing the transfer of monocrystalline Si films. The paper discusses prospects and limitations of these approaches and describes device results based on the transfer of quasi-monocrystalline Si films. Using Si absorber films epitaxially grown on quasi-monocrystalline Si, we achieve a conversion efficiency of 13˙6% for a 4 cm2 sized thin film solar cell on glass. In contrast to the limited performance of polycrystalline Si thin film solar cells imposed by the presence of grain boundaries, transfer approaches are expected to result in thin film solar cell efficiencies in the range of 15 – 18% depending on process maturity and complexity. The transfer of monocrystalline Si films therefore opens a new avenue to an efficient and competitive Si-based thin film technology. Copyright © 2000 John Wiley & Sons, Ltd

[1]  D. Klingenberg Particle Polarization and Nonlinear Effects in Electrorheological Suspensions , 1998 .

[2]  J. Werner,et al.  Thin film solar cells on glass by transfer of monocrystalline Si films , 1999 .

[3]  R. Bergmann Model for defect-free epitaxial lateral overgrowth of Si over SiO2 by liquid phase epitaxy , 1991 .

[4]  R. Bergmann,et al.  Ultrathin Quasi-Monocrystalline Silicon Films for Electronic Devices , 1999 .

[5]  U. Gösele,et al.  Wafer-Bonding and Thinning Technologies , 1998 .

[6]  Ralf B. Bergmann,et al.  Crystalline Si thin-film solar cells: a review , 1999 .

[7]  Ralf B. Bergmann,et al.  Quasi-monocrystalline silicon for thin-film devices , 1999 .

[8]  Martin A. Green,et al.  Limiting efficiency of bulk and thin-film silicon solar cells in the presence of surface recombination , 1999 .

[9]  M. Green,et al.  Survey of material options and issues for thin film silicon solar cells , 1998 .

[10]  Alistair B. Sproul,et al.  Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature , 1998 .

[11]  M. Bruel,et al.  Smart-Cut: A New Silicon On Insulator Material Technology Based on Hydrogen Implantation and Wafer Bonding*1 , 1997 .

[12]  Rommel Noufi,et al.  Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin‐film solar cells , 1999 .

[13]  R. McClelland,et al.  Lightweight tandem GaAs/CuInSe/sub 2/ solar cells , 1990 .

[14]  K. Catchpole,et al.  Lift-off of silicon epitaxial layers for solar cell applications , 1997, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997.

[15]  Martin A. Green Depletion region recombination in silicon thin-film multilayer solar cells , 1998 .

[17]  A. Catalano Polycrystalline thin-film technologies: Status and prospects , 1996 .

[18]  R. Bergmann,et al.  Laser-Crystallized Polycrystalline Silicon on Glass for Photovoltaic Applications , 1999 .

[19]  S. Ray,et al.  Nanocrystalline silicon as intrinsic layer in thin film solar cells , 1998 .

[20]  R. W. McClelland,et al.  A technique for producing epitaxial films on reuseable substrates , 1980 .

[21]  R. Bergmann,et al.  Large grained polycrystalline silicon films by solid phase crystallization of phosphorus-doped amorphous silicon , 1997 .

[22]  Diego Fischer,et al.  Microcrystalline silicon and micromorph tandem solar cells , 1999 .

[23]  Michel Bruel,et al.  Application of hydrogen ion beams to Silicon On Insulator material technology , 1996 .

[24]  S. Li,et al.  Electrical Characterization of Silicon-On-Insulator Materials and Devices , 1995 .

[25]  P. Roitman,et al.  Evolution and Future Trends of SIMOX Material , 1998 .

[26]  J. Werner,et al.  Monocrystalline Si waffles for thin solar cells fabricated by the novel perforated-silicon process , 1998 .

[27]  Takao Yonehara,et al.  Epitaxial layer transfer by bond and etch back of porous Si , 1994 .

[28]  A. Uhlir Electrolytic shaping of germanium and silicon , 1956 .

[29]  S. Narasimha,et al.  Back surface field and emitter passivation effects in the record high efficiency n-type dendritic web silicon solar cell , 1997, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997.

[30]  S. Guha,et al.  Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies , 1997 .

[31]  Smart-Cut® Technology: Basic Mechanisms and Applications , 2000 .

[32]  J. Werner,et al.  LOW-TEMPERATURE SI EPITAXY WITH HIGH DEPOSITION RATE USING ION-ASSISTED DEPOSITION , 1998 .

[33]  Microstructure, heat treatment, and oxidation study of porous silicon formed on moderately doped p-type silicon , 1997 .

[34]  Y.-L. Chao,et al.  A “smarter-cut” approach to low temperature silicon layer transfer , 1998 .

[35]  J. Werner,et al.  Nucleation and Growth of Crystalline Silicon Films on Glass for Solar Cells , 1998 .

[36]  Arvind Shah,et al.  Thin-film silicon solar cells: A review and selected trends , 1995 .

[37]  M. Green,et al.  24·5% Efficiency silicon PERT cells on MCZ substrates and 24·7% efficiency PERL cells on FZ substrates , 1999 .

[38]  Hiroyuki Fujiwara,et al.  Optimization of hydrogenated amorphous silicon p–i–n solar cells with two-step i layers guided by real-time spectroscopic ellipsometry , 1998 .

[39]  M. Green,et al.  Novel parallel multijunction solar cell , 1994 .

[40]  Martin A. Green,et al.  Solar cell efficiency tables (version 14) , 1999 .

[41]  R. Brendel,et al.  Modeling light trapping and electronic transport of waffle-shaped crystalline thin-film Si solar cells , 1999 .

[42]  Low-Temperature Processing of Crystalline Si Films on Glass for Electronic Applications , 2000 .

[43]  Toshiaki Baba,et al.  High-quality polycrystalline silicon thin film prepared by a solid phase crystallization method , 1996 .

[44]  A. B. Wengrow,et al.  Transfer of patterned ion-cut silicon layers , 1998 .

[45]  M. Green,et al.  17.6% efficient multilayer thin‐film silicon solar cells deposited on heavily doped silicon substrates , 1996 .

[46]  A. G. Cullis,et al.  The structural and luminescence properties of porous silicon , 1997 .