Adaptive sampled-data based linear quadratic optimal control of stochastic systems

The problem of sampled-data (SD) based adaptive linear quadratic (LQ) optimal control is considered for linear stochastic continuous-time systems with unknown parameters and disturbances. To overcome the difficulties caused by the unknown parameters and incompleteness of the state information, and to probe into the influence of sample size on system performance, a cost-biased parameter estimator and an adaptive control design method are presented. Under the assumption that the unknown parameter belongs to a known finite set, some sufficient conditions ensuring the convergence of the parameter estimate are obtained. It is shown that when the sample step size is small, the SD-based adaptive control is LQ optimal for the corresponding discretized system, and sub-optimal compared with that of the case where the parameter is known and the information is complete.

[1]  Li Qiu,et al.  𝓗2-optimal Design of Multirate Sampled-data Systems , 1994, IEEE Trans. Autom. Control..

[2]  Peter E. Caines,et al.  Adaptive control for jump parameter systems via nonlinear filtering , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[3]  G. E. Taylor,et al.  Computer Controlled Systems: Theory and Design , 1985 .

[4]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[5]  Robin J. Evans,et al.  An algorithm for multirate sampling adaptive control , 1989 .

[6]  Bruce A. Francis,et al.  Quadratic stabilization of sampled-data systems with quantization , 2003, Autom..

[7]  Stuart Townley,et al.  Adaptive sampling control of high-gain stabilizable systems , 1999, IEEE Trans. Autom. Control..

[8]  Han-Fu Chen,et al.  Identification and Stochastic Adaptive Control , 1991 .

[9]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[10]  Bassam Bamieh,et al.  A general framework for linear periodic systems with applications to H/sup infinity / sampled-data control , 1992 .

[11]  Ji-Feng Zhang,et al.  Optimality analysis of adaptive sampled control of hybrid systems with quadratic index , 2005, IEEE Trans. Autom. Control..

[12]  Romeo Ortega,et al.  Discrete Time Model Reference Adaptive Control for Continuous Time Systems using Generalized Sampled Data Hold Functions , 1988, 1988 American Control Conference.

[13]  Ji-Feng Zhang,et al.  Sampled-data-based LQ control of stochastic linear continuous-time systems , 2002, Science in China Series F Information Sciences.

[14]  C.C. White,et al.  Dynamic programming and stochastic control , 1978, Proceedings of the IEEE.

[15]  Chen Hanfu CONTINUOUS-TIME STOCHASTIC ADAPTIVE CONTROL STABILIZING THE SYSTEM AND MINIMIZING THE QUADRATIC LOSS FUNCTION , 1995 .

[16]  B. Pasik-Duncan,et al.  Stochastic adaptive control for continuous-time linear systems with quadratic cost , 1996 .

[17]  Lei Guo,et al.  Adaptive continuous-time linear quadratic Gaussian control , 1999, IEEE Trans. Autom. Control..

[18]  Karl Johan Åström,et al.  Computer-Controlled Systems: Theory and Design , 1984 .

[19]  P. R. Kumar,et al.  Optimal Adaptive Control of Linear-Quadratic-Gaussian Systems , 1983 .

[20]  Robustness of sampled-data control systems having parametric uncertainty: a conic sector approach , 1993, IEEE Trans. Autom. Control..

[21]  P. Kumar,et al.  Adaptive Linear Quadratic Gaussian Control: The Cost-Biased Approach Revisited , 1998 .

[22]  P. Caines,et al.  On the Adaptive Control for Jump Parameter Systems viaNonlinear Filtering , 1995 .

[23]  P. Caines,et al.  Optimal adaptive LQG control for systems with finite state process parameters , 1985, The 23rd IEEE Conference on Decision and Control.

[24]  B. Pasik-Duncan,et al.  Stochastic linear quadratic adaptive control for continuous-time first-order systems , 1997 .

[25]  P. Kokotovic,et al.  Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations , 1999 .

[26]  P. Caines,et al.  Optimal adaptive LQG control for systems with finite state process parameters , 1985, IEEE Transactions on Automatic Control.

[27]  H. T. Toivonen,et al.  The sampled-data H problem: A unified framework for discretizationbased methods and Riccati equation solution , 1997 .