The 3x+1 Problem: An Overview
暂无分享,去创建一个
[1] A. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .
[2] Steven J. Miller,et al. An Invitation to Modern Number Theory , 2020 .
[3] Jorge Nuno Silva,et al. Mathematical Games , 1959, Nature.
[4] Jeffrey C. Lagarias,et al. The Ultimate Challenge: The 3x+1 Problem , 2011 .
[5] Oded Goldreich,et al. A Primer on Pseudorandom Generators , 2010 .
[6] Stavros Garoufalidis,et al. The Degree of a q-Holonomic Sequence is a Quadratic Quasi-Polynomial , 2010, Electron. J. Comb..
[7] Liesbeth De Mol,et al. On the boundaries of solvability and unsolvability in tag systems. Theoretical and Experimental Results , 2009, CSP.
[8] Matthew Cook,et al. A Concrete View of Rule 110 Computation , 2009, CSP.
[9] Matthew Cook,et al. Computation with finite stochastic chemical reaction networks , 2008, Natural Computing.
[10] Joseph L. Yucas,et al. A Polynomial Analogue of the 3n + 1 Problem , 2008, Am. Math. Mon..
[11] A. Evseev. Higman's PORC conjecture for a family of groups , 2007, 0710.0394.
[12] Liesbeth De Mol,et al. Study of Limits of Solvability in Tag Systems , 2007, MCU.
[13] S. Robins,et al. Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra , 2007 .
[14] J. Silverman. The Arithmetic of Dynamical Systems , 2007 .
[15] Liesbeth De Mol,et al. Closing the Circle: An Analysis of Emil Post's Early Work , 2006, Bull. Symb. Log..
[16] M. Mashaal,et al. Bourbaki: A Secret Society of Mathematicians , 2006 .
[17] W. Bruns,et al. On the coefficients of Hilbert quasipolynomials , 2005, math/0512329.
[18] J. Lagarias,et al. The 3x + 1 semigroup , 2004, math/0411140.
[19] Elwyn R. Berlekamp,et al. Winning Ways for Your Mathematical Plays, Volume 4 , 2004 .
[20] J. Lagarias. The 3x+1 problem: An annotated bibliography (1963--1999) , 2003, math/0309224.
[21] Eli Glasner,et al. Ergodic Theory via Joinings , 2003 .
[22] Richard E. Overill,et al. Foundations of Cryptography: Basic Tools , 2002, J. Log. Comput..
[23] I. Krasikov,et al. Bounds for the 3x+1 problem using difference inequalities , 2002, math/0205002.
[24] Jeffrey C. Lagarias,et al. Lower bounds for the total stopping time of 3x + 1 iterates , 2001, Math. Comput..
[25] András Sárközy,et al. Unsolved problems in number theory , 2001, Period. Math. Hung..
[26] Günther Wirsching,et al. The Dynamical System Generated by the 3n+1 Function , 1998 .
[27] F. Mignosi. On a Generalization of the 3x + 1 Problem , 1995 .
[28] K. Schmidt. Dynamical Systems of Algebraic Origin , 1995 .
[29] Shalom Eliahou,et al. The 3x+1 problem: new lower bounds on nontrivial cycle lengths , 1993, Discret. Math..
[30] William J. Cook,et al. On integer points in polyhedra , 1992, Comb..
[31] Jeffrey C. Lagarias,et al. THE 3x + 1 PROBLEM: TWO STOCHASTIC MODELS , 1992 .
[32] Art Quaife,et al. Unsolved problems in elementary number theory , 1991, Journal of Automated Reasoning.
[33] Peter D. Lax,et al. From Cardinals to Chaos: Reflections on the Life and Legacy of Stanislaw Ulam , 1989 .
[34] S. Wolfram. Statistical mechanics of cellular automata , 1983 .
[35] C. J. Everett. Iteration of the number-theoretic function f(2n) = n, f(2n + 1) = 3n + 2 , 1977 .
[36] Richard Rado,et al. Arithmetic Properties of Certain Recursively Defined Sets. , 1974 .
[37] Arnold M. Zwicky,et al. Three open questions in the theory of one-symbol Smullyan systems , 1970, SIGA.
[38] Hao Wang. Tag systems and lag systems , 1963 .
[39] M. Minsky. Recursive Unsolvability of Post's Problem of "Tag" and other Topics in Theory of Turing Machines , 1961 .
[40] Emil L. Post. Formal Reductions of the General Combinatorial Decision Problem , 1943 .
[41] K. Matthews. Generalized 3x+1 mappings: Markov chains and ergodic theory , 2010 .
[42] Liesbeth De Mol,et al. Tag systems and Collatz-like functions , 2008, Theor. Comput. Sci..
[43] J. Simons,et al. Theoretical and computational bounds for m-cycles of the 3n + 1 problem , 2005 .
[44] Yehuda Pinchover,et al. Geometry, Spectral Theory, Groups, and Dynamics , 2005 .
[45] Matthew Cook,et al. Universality in Elementary Cellular Automata , 2004, Complex Syst..
[46] J. Simons. Theoretical and computational bounds for m-cycles of the 3 n + 1-problem , 2004 .
[47] Y. Sinai. Uniform Distribution in the (3x+1)-Problem , 2003 .
[48] T. Brox. Collatz cycles with few descents , 2000 .
[49] J. Zukas. Introduction to the Modern Theory of Dynamical Systems , 1998 .
[50] Edgar E. Enochs,et al. On Cohen-Macaulay rings , 1994 .
[51] Ethan Akin,et al. The general topology of dynamical systems , 1993 .
[52] J. Lagarias. The set of rational cycles for the 3x+1 problem , 1990 .
[53] John W. Dawson,et al. Collected Works, Volume I, Publications 1929-1936 , 1987 .
[54] Stephen Wolfram,et al. Theory and Applications of Cellular Automata , 1986 .
[55] Jeffrey C. Lagarias,et al. The 3x + 1 Problem and its Generalizations , 1985 .
[56] Richard K. Guy,et al. Don't Try to Solve These Problems! , 1983 .
[57] Stephen Wolfram,et al. Universality and complexity in cellular automata , 1983 .
[58] Richard K. Guy,et al. Conway's Prime Producing Machine , 1983 .
[59] D. Klarner. A sufficient condition for certain semigroups to be free , 1982 .
[60] R. Terras. On the existence of a density , 1979 .
[61] R. Terras,et al. A stopping time problem on the positive integers , 1976 .
[62] F. Browder. Mathematical developments arising from Hilbert problems , 1976 .
[63] J. Roubaud. Un problème combinatoire posé par la poésie lyrique des troubadours , 1969 .
[64] John Cocke,et al. Universality of Tag Systems with P = 2 , 1964, JACM.
[65] S. Ulam. Problems in modern mathematics , 1964 .
[66] C. A. Rogers. LECTURES ON DIOPHANTINE APPROXIMATIONS , 1964 .
[67] G. Higman,et al. Enumerating p-Groups, II: Problems Whose Solution is PORC , 1960 .
[68] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .