The 3x+1 Problem: An Overview

The 3x+1 problem, which is often called the Collatz problem, concerns the behavior of this function under iteration, starting with a given positive integer n. 3x+1 Conjecture. Starting from any positive integer n, iterations of the function C(x) will eventually reach the number 1. Thereafter iterations will cycle, taking successive values 1, 4, 2, 1, .... This problem goes under many other names, including the Syracuse problem, Hasse’s algorithm, Kakutani’s problem and Ulam’s problem. A commonly used reformulation of the 3x+1 problem iterates a different function, the 3x+ 1 function, given by

[1]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[2]  Steven J. Miller,et al.  An Invitation to Modern Number Theory , 2020 .

[3]  Jorge Nuno Silva,et al.  Mathematical Games , 1959, Nature.

[4]  Jeffrey C. Lagarias,et al.  The Ultimate Challenge: The 3x+1 Problem , 2011 .

[5]  Oded Goldreich,et al.  A Primer on Pseudorandom Generators , 2010 .

[6]  Stavros Garoufalidis,et al.  The Degree of a q-Holonomic Sequence is a Quadratic Quasi-Polynomial , 2010, Electron. J. Comb..

[7]  Liesbeth De Mol,et al.  On the boundaries of solvability and unsolvability in tag systems. Theoretical and Experimental Results , 2009, CSP.

[8]  Matthew Cook,et al.  A Concrete View of Rule 110 Computation , 2009, CSP.

[9]  Matthew Cook,et al.  Computation with finite stochastic chemical reaction networks , 2008, Natural Computing.

[10]  Joseph L. Yucas,et al.  A Polynomial Analogue of the 3n + 1 Problem , 2008, Am. Math. Mon..

[11]  A. Evseev Higman's PORC conjecture for a family of groups , 2007, 0710.0394.

[12]  Liesbeth De Mol,et al.  Study of Limits of Solvability in Tag Systems , 2007, MCU.

[13]  S. Robins,et al.  Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra , 2007 .

[14]  J. Silverman The Arithmetic of Dynamical Systems , 2007 .

[15]  Liesbeth De Mol,et al.  Closing the Circle: An Analysis of Emil Post's Early Work , 2006, Bull. Symb. Log..

[16]  M. Mashaal,et al.  Bourbaki: A Secret Society of Mathematicians , 2006 .

[17]  W. Bruns,et al.  On the coefficients of Hilbert quasipolynomials , 2005, math/0512329.

[18]  J. Lagarias,et al.  The 3x + 1 semigroup , 2004, math/0411140.

[19]  Elwyn R. Berlekamp,et al.  Winning Ways for Your Mathematical Plays, Volume 4 , 2004 .

[20]  J. Lagarias The 3x+1 problem: An annotated bibliography (1963--1999) , 2003, math/0309224.

[21]  Eli Glasner,et al.  Ergodic Theory via Joinings , 2003 .

[22]  Richard E. Overill,et al.  Foundations of Cryptography: Basic Tools , 2002, J. Log. Comput..

[23]  I. Krasikov,et al.  Bounds for the 3x+1 problem using difference inequalities , 2002, math/0205002.

[24]  Jeffrey C. Lagarias,et al.  Lower bounds for the total stopping time of 3x + 1 iterates , 2001, Math. Comput..

[25]  András Sárközy,et al.  Unsolved problems in number theory , 2001, Period. Math. Hung..

[26]  Günther Wirsching,et al.  The Dynamical System Generated by the 3n+1 Function , 1998 .

[27]  F. Mignosi On a Generalization of the 3x + 1 Problem , 1995 .

[28]  K. Schmidt Dynamical Systems of Algebraic Origin , 1995 .

[29]  Shalom Eliahou,et al.  The 3x+1 problem: new lower bounds on nontrivial cycle lengths , 1993, Discret. Math..

[30]  William J. Cook,et al.  On integer points in polyhedra , 1992, Comb..

[31]  Jeffrey C. Lagarias,et al.  THE 3x + 1 PROBLEM: TWO STOCHASTIC MODELS , 1992 .

[32]  Art Quaife,et al.  Unsolved problems in elementary number theory , 1991, Journal of Automated Reasoning.

[33]  Peter D. Lax,et al.  From Cardinals to Chaos: Reflections on the Life and Legacy of Stanislaw Ulam , 1989 .

[34]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[35]  C. J. Everett Iteration of the number-theoretic function f(2n) = n, f(2n + 1) = 3n + 2 , 1977 .

[36]  Richard Rado,et al.  Arithmetic Properties of Certain Recursively Defined Sets. , 1974 .

[37]  Arnold M. Zwicky,et al.  Three open questions in the theory of one-symbol Smullyan systems , 1970, SIGA.

[38]  Hao Wang Tag systems and lag systems , 1963 .

[39]  M. Minsky Recursive Unsolvability of Post's Problem of "Tag" and other Topics in Theory of Turing Machines , 1961 .

[40]  Emil L. Post Formal Reductions of the General Combinatorial Decision Problem , 1943 .

[41]  K. Matthews Generalized 3x+1 mappings: Markov chains and ergodic theory , 2010 .

[42]  Liesbeth De Mol,et al.  Tag systems and Collatz-like functions , 2008, Theor. Comput. Sci..

[43]  J. Simons,et al.  Theoretical and computational bounds for m-cycles of the 3n + 1 problem , 2005 .

[44]  Yehuda Pinchover,et al.  Geometry, Spectral Theory, Groups, and Dynamics , 2005 .

[45]  Matthew Cook,et al.  Universality in Elementary Cellular Automata , 2004, Complex Syst..

[46]  J. Simons Theoretical and computational bounds for m-cycles of the 3 n + 1-problem , 2004 .

[47]  Y. Sinai Uniform Distribution in the (3x+1)-Problem , 2003 .

[48]  T. Brox Collatz cycles with few descents , 2000 .

[49]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[50]  Edgar E. Enochs,et al.  On Cohen-Macaulay rings , 1994 .

[51]  Ethan Akin,et al.  The general topology of dynamical systems , 1993 .

[52]  J. Lagarias The set of rational cycles for the 3x+1 problem , 1990 .

[53]  John W. Dawson,et al.  Collected Works, Volume I, Publications 1929-1936 , 1987 .

[54]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[55]  Jeffrey C. Lagarias,et al.  The 3x + 1 Problem and its Generalizations , 1985 .

[56]  Richard K. Guy,et al.  Don't Try to Solve These Problems! , 1983 .

[57]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[58]  Richard K. Guy,et al.  Conway's Prime Producing Machine , 1983 .

[59]  D. Klarner A sufficient condition for certain semigroups to be free , 1982 .

[60]  R. Terras On the existence of a density , 1979 .

[61]  R. Terras,et al.  A stopping time problem on the positive integers , 1976 .

[62]  F. Browder Mathematical developments arising from Hilbert problems , 1976 .

[63]  J. Roubaud Un problème combinatoire posé par la poésie lyrique des troubadours , 1969 .

[64]  John Cocke,et al.  Universality of Tag Systems with P = 2 , 1964, JACM.

[65]  S. Ulam Problems in modern mathematics , 1964 .

[66]  C. A. Rogers LECTURES ON DIOPHANTINE APPROXIMATIONS , 1964 .

[67]  G. Higman,et al.  Enumerating p-Groups, II: Problems Whose Solution is PORC , 1960 .

[68]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .