Optical performance and color investigations of hybrid solar cells based on P3HT:ZnO, PCPDTBT:ZnO, PTB7:ZnO and DTS(PTTh2)2:ZnO

Abstract Spectroscopic ellipsometry has been used to extract the optical indices of blend organic donor:ZnO (1:2) thin films. Four different donor molecules are investigated in this study: P3HT, PCPDTBT, PTB7 and DTS(PTTh 2 ) 2 . Using these optical indices as input parameters, the optical performances and the color range for human eyes of donor:ZnO (1:2) hybrid organic–inorganic solar cells have been investigated through optical simulations. These calculations suggest that a tradeoff between reflectance for human eyes and photonic absorption of the AM1.5 spectrum can be reached depending on the composition of the active layer. While the total device reflectance in the visible range is closely correlated to the photonic absorption in the case of a high band gap semiconducting material, a tradeoff is easier to obtain in the case of low band gap semi-conducting materials. Finally, we show that the color range of devices depends both on the active layer compositions and the geometrical parameters of the cells.

[1]  Wei Lin Leong,et al.  Solution-processed small-molecule solar cells with 6.7% efficiency. , 2011, Nature materials.

[2]  Mikkel Jørgensen,et al.  Simultaneous multilayer formation of the polymer solar cell stack using roll-to-roll double slot-die coating from water , 2012 .

[3]  M. Skompska Hybrid conjugated polymer/semiconductor photovoltaic cells , 2010 .

[4]  Mm Martijn Wienk,et al.  The use of ZnO as optical spacer in polymer solar cells: Theoretical and experimental study , 2007 .

[5]  Gerald Earle Jellison,et al.  Erratum: ‘‘Parameterization of the optical functions of amorphous materials in the interband region’’ [Appl. Phys. Lett. 69, 371 (1996)] , 1996 .

[6]  Jean-Michel Nunzi,et al.  Optical modeling of the ultimate efficiency of pentacene: N, N′-ditridecylperylene-3, 4, 9, 10-tetracarboxylic diimide–blend solar cells , 2007 .

[7]  T. Nann,et al.  First solar cells based on CdTe nanoparticle/MEH-PPV composites , 2004 .

[8]  Monica Lira-Cantu,et al.  Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review , 2009 .

[9]  J. Nelson,et al.  Hybrid Heterojunction Nanorods for Nanoscale Controlled Morphology in Bulk Heterojunction Solar Cells , 2011 .

[10]  Francois Flory,et al.  Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend , 2007 .

[11]  Yong Cao,et al.  Simultaneous Enhancement of Open‐Circuit Voltage, Short‐Circuit Current Density, and Fill Factor in Polymer Solar Cells , 2011, Advanced materials.

[12]  H. Rubinsztein-Dunlop,et al.  Carrier transport in PbS nanocrystal conducting polymer composites , 2004, cond-mat/0412307.

[13]  Yuqin Ding,et al.  Hybrid nanocrystal/polymer solar cells based on tetrapod-shaped CdSexTe1−x nanocrystals , 2006, Nanotechnology.

[14]  W. J. Beek,et al.  Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer , 2004 .

[15]  Jian Xu,et al.  Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells , 2006 .

[16]  R. J. Shul,et al.  GAN : PROCESSING, DEFECTS, AND DEVICES , 1999 .

[17]  G. Jellison,et al.  Parameterization of the optical functions of amorphous materials in the interband region , 1996 .

[18]  E. Drouard,et al.  Light harvesting in organic solar cells , 2010 .

[19]  Peng,et al.  Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. , 1996, Physical review. B, Condensed matter.

[20]  V. Bulović,et al.  Inorganic-organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires. , 2011, Nano letters.

[21]  Christoph J. Brabec,et al.  Fabrication, Optical Modeling, and Color Characterization of Semitransparent Bulk‐Heterojunction Organic Solar Cells in an Inverted Structure , 2010 .

[22]  A. K. Rath,et al.  To make polymer: Quantum dot hybrid solar cells NIR-active by increasing diameter of PbSnanoparticles , 2011 .

[23]  Andreas Kornowski,et al.  Self-assembly of ZnO: from nanodots to nanorods. , 2002, Angewandte Chemie.

[24]  Ashraf Uddin,et al.  Organic - Inorganic Hybrid Solar Cells: A Comparative Review , 2012 .

[25]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[26]  Henning Sirringhaus,et al.  Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. , 2005, Nano letters.

[27]  J. Nelson,et al.  Hybrid bulk heterojunction solar cells based on p3ht and porphyrin-modified zno nanorods , 2010 .

[28]  Michael D. McGehee,et al.  Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania , 2003 .

[29]  L. S. Roman,et al.  Modeling photocurrent action spectra of photovoltaic devices based on organic thin films , 1999 .

[30]  Ullrich Scherf,et al.  Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymer PCPDTBT , 2011 .

[31]  F. Rauscher,et al.  Performance enhancement of CdSe nanorod-polymer based hybrid solar cells utilizing a novel combination of post-synthetic nanoparticle surface treatments , 2012 .

[32]  J. Ackermann,et al.  Towards solution-processed ambipolar hybrid thin-film transistors based on ZnO nanoparticles and P3HT polymer , 2013 .

[33]  Volker Schmidt,et al.  The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells. , 2009, Nature materials.

[34]  M. Taguchi,et al.  Development status of high-efficiency HIT solar cells , 2011 .