High-order finite volume schemes for layered atmospheric models

We present a numerical scheme for the solution of a class of atmospheric models where high horizontal resolution is required while a coarser vertical structure is allowed. The proposed scheme considers a layering procedure for the original set of equations, and the use of high-order ADER finite volume schemes for the solution of the system of balance laws arising from the dimensional reduction procedure. We present several types of layering based upon Galerkin discretizations of the vertical structure, and we study the effect of incrementing the order of horizontal approximation. Numerical experiments for the computational validation of the convergence of the scheme together with the study of physical phenomena are performed over 2D linear advective models, including a set of equations for an isothermal atmosphere.

[1]  With Invariant Submanifolds,et al.  Systems of Conservation Laws , 2009 .

[2]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[5]  Eleuterio F. Toro,et al.  ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..

[7]  Vladimir Zeitlin,et al.  Simplified two-layer models of precipitating atmosphere and their properties , 2011 .

[8]  William C. Skamarock,et al.  Efficiency and Accuracy of the Klemp-Wilhelmson Time-Splitting Technique , 1994 .

[9]  Vladimir Zeitlin,et al.  A robust well-balanced scheme for multi-layer shallow water equations , 2010 .

[10]  Thomas M. Hamill,et al.  Predictability of Weather and Climate: Ensemble-based atmospheric data assimilation , 2006 .

[11]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[12]  Michael Dumbser,et al.  Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems , 2007, J. Comput. Phys..

[13]  Eugenia Kalnay,et al.  Atmospheric Modeling, Data Assimilation and Predictability , 2002 .

[14]  T. Dunkerton,et al.  Hurricane formation in diabatic Ekman turbulence , 2008 .

[15]  Carlos Parés,et al.  A Q-SCHEME FOR A CLASS OF SYSTEMS OF COUPLED CONSERVATION LAWS WITH SOURCE TERM. APPLICATION TO A TWO-LAYER 1-D SHALLOW WATER SYSTEM , 2001 .

[16]  Eleuterio F. Toro,et al.  ADER schemes for three-dimensional non-linear hyperbolic systems , 2005 .

[17]  Francis X. Giraldo,et al.  A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases , 2008, J. Comput. Phys..

[18]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[19]  D. Durran Numerical Methods for Fluid Dynamics , 2010 .

[20]  Yan Chen,et al.  Ensemble Kalman filter for data assimilation , 2013, Comput. Geosci..

[21]  F. Bouchut Chapter 4 Efficient Numerical Finite Volume Schemes for Shallow Water Models , 2007 .

[22]  Roger Temam,et al.  Simulations of the 2.5D inviscid primitive equations in a limited domain , 2008, J. Comput. Phys..

[23]  Eleuterio F. Toro,et al.  Towards Very High Order Godunov Schemes , 2001 .

[24]  Alfio Quarteroni,et al.  Finite element approximation of Quasi-3D shallow water equations , 1999 .

[25]  Michael Dumbser,et al.  Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics , 2008, Journal of Computational Physics.

[26]  R. Daley Atmospheric Data Analysis , 1991 .

[27]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .