Boundary layer flow of a nanofluid over an exponentially stretching sheet with convective boundary conditions

Purpose – This paper aims to discuss the flow and heat transfer characteristics over an exponentially stretching sheet in a nanofluid with convective boundary conditions. The effects of Brownian motion and thermophoresis are also accounted.Design/methodology/approach – The flow is therefore governed by the Brownian motion parameter (Nb), the thermophoresis parameter (Nt), the Prandtl number (Pr), the Lewis number (Le) and the Biot number (Bi). The analytic solutions of the arising differential systems have been obtained by homotopy analysis method (HAM).Findings – The temperature rises and the thermal boundary layer thickens with an increase in the Brownian motion and thermophoresis parameters. The surface heat and mass transfer appreciably increase with an increase in the Prandtl and Lewis numbers.Originality/value – The presented results also include the analysis for constant wall temperature.

[1]  T. Hayat,et al.  Influence of thermal radiation on the boundary layer flow due to an exponentially stretching sheet , 2008 .

[2]  R. Cortell Effects of viscous dissipation and radiation on the thermal boundary layer over a nonlinearly stretching sheet , 2008 .

[3]  Somchai Wongwises,et al.  A critical review of convective heat transfer of nanofluids , 2007 .

[4]  Sujit Kumar Khan,et al.  Viscoelastic boundary layer flow and heat transfer over an exponential stretching sheet , 2005 .

[5]  Kumbakonam R. Rajagopal,et al.  Flow of a viscoelastic fluid over a stretching sheet , 1984 .

[6]  S. Kakaç,et al.  Review of convective heat transfer enhancement with nanofluids , 2009 .

[7]  K. Vajravelu,et al.  Viscous flow over a nonlinearly stretching sheet , 2001, Appl. Math. Comput..

[8]  Mohammad Ferdows,et al.  FINITE DIFFERENCE SOLUTION OF MHD RADIATIVE BOUNDARY LAYER FLOW OF A NANOFLUID PAST A STRETCHING SHEET , 2010 .

[9]  Y. Xuan,et al.  Investigation on Convective Heat Transfer and Flow Features of Nanofluids , 2003 .

[10]  L. Crane Flow past a stretching plate , 1970 .

[11]  Donald A. Nield,et al.  The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid , 2009 .

[12]  Tasawar Hayat,et al.  Melting heat transfer in the stagnation‐point flow of an upper‐convected Maxwell (UCM) fluid past a stretching sheet , 2012 .

[13]  Abdul Aziz,et al.  Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition , 2011 .

[14]  Donald A. Nield,et al.  Natural convective boundary-layer flow of a nanofluid past a vertical plate , 2010 .

[15]  B. C. Sakiadis Boundary‐layer behavior on continuous solid surfaces: I. Boundary‐layer equations for two‐dimensional and axisymmetric flow , 1961 .

[16]  Helge I. Andersson,et al.  Magnetohydrodynamic flow of a power-law fluid over a stretching sheet , 1992 .

[17]  A. Mujumdar,et al.  A review on nanofluids - part I: theoretical and numerical investigations , 2008 .

[18]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[19]  Rafael Cortell,et al.  Viscous flow and heat transfer over a nonlinearly stretching sheet , 2007, Appl. Math. Comput..

[20]  S. Liao Notes on the homotopy analysis method: Some definitions and theorems , 2009 .

[21]  R. Bhargava,et al.  Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: A numerical study , 2012 .

[22]  Eugen Magyari,et al.  Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface , 1999 .

[23]  S. Abbasbandy,et al.  A new application of the homotopy analysis method: Solving the Sturm–Liouville problems , 2011 .

[24]  E. Elbashbeshy,et al.  Heat transfer over an exponentially stretching continuous surface with suction , 2001 .

[25]  Arun S. Mujumdar,et al.  A review on nanofluids - part II: experiments and applications , 2008 .

[26]  A. Bataineh,et al.  On a new reliable modification of homotopy analysis method , 2009 .

[27]  Mohammad Mehdi Rashidi,et al.  Analytic approximate solutions for steady flow over a rotating disk in porous medium with heat transfer by homotopy analysis method , 2012 .

[28]  Layne T. Watson,et al.  Micropolar flow past a stretching sheet , 1985 .