Statistical analysis of random sphere packings with variable radius distribution

Many solid state systems can be modelled by means of packings of hard spheres of variable size. Therefore the spatial-statistical analysis of the geometrical structure of such packings is of great scientific interest. The present paper starts with the application of classical characteristics such as packing fraction, coordination number and pair correlation function for the characterization of sphere packings. Then, the application of tessellation-based methods follows, which includes the analysis of correlations between cell face and coordination numbers. Finally, a search method for crystalline sub-structures is presented.

[1]  J. L. Finney,et al.  Random packings and the structure of simple liquids. I. The geometry of random close packing , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[3]  W. Visscher,et al.  Random Packing of Equal and Unequal Spheres in Two and Three Dimensions , 1972, Nature.

[4]  Luc Oger,et al.  Properties of disordered sphere packings I. Geometric structure: Statistical model, numerical simulations and experimental results , 1986 .

[5]  L. Oger,et al.  Coordinance of a spherical impurity in a disordered packing of equal spheres , 1987 .

[6]  "Single sample concept": theoretical model for a combinatorial approach to solid-state inorganic materials. , 2005, Journal of combinatorial chemistry.

[7]  U. Müller Kristallographische Gruppe‐Untergruppe‐Beziehungen und ihre Anwendung in der Kristallchemie , 2004 .

[8]  V. Luchnikov,et al.  Crystallization of dense hard sphere packings , 2002 .

[9]  Luc Oger,et al.  A model of binary assemblies of spheres , 2001 .

[10]  B. Hambly Fractals, random shapes, and point fields , 1994 .

[11]  D. Stoyan,et al.  Computer simulated dense-random packing models as approach to the structure of porous low-k dielectrics , 2005 .

[12]  S. Torquato Random Heterogeneous Materials , 2002 .

[13]  Thomas A. Weber,et al.  Inherent structure theory of liquids in the hard‐sphere limit , 1985 .

[14]  L. Oger,et al.  Geometrical characterization of hard-sphere systems. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  J. D. Bernal,et al.  Random close-packed hard-sphere model. II. Geometry of random packing of hard spheres , 1967 .

[16]  Wiley,et al.  Numerical simulation of the dense random packing of a binary mixture of hard spheres: Amorphous metals. , 1987, Physical review. B, Condensed matter.

[17]  Luc Oger,et al.  Statistics of Voronoi cells of slightly perturbed face-centered cubic and hexagonal close-packed lattices , 1998 .

[18]  J. D. BERNAL,et al.  Packing of Spheres: Co-ordination of Randomly Packed Spheres , 1960, Nature.

[19]  Daniel B. Miracle,et al.  The influence of efficient atomic packing on the constitution of metallic glasses , 2003 .

[20]  F. Stillinger,et al.  Statistical geometry of particle packings. I. Algorithm for exact determination of connectivity, volume, and surface areas of void space in monodisperse and polydisperse sphere packings , 1997 .

[21]  P. Steinhardt,et al.  Bond-orientational order in liquids and glasses , 1983 .

[22]  D. Kilgour,et al.  The density of random close packing of spheres , 1969 .

[23]  Tomaso Aste,et al.  The pursuit of perfect packing , 2000 .

[24]  T. Aste,et al.  Investigating the geometrical structure of disordered sphere packings , 2004 .

[25]  John Ziman,et al.  Models of disorder , 1979 .

[26]  J. L. Finney,et al.  Characterisation of models of multicomponent amorphous metals: The radical alternative to the Voronoi polyhedron , 1982 .

[27]  Salvatore Torquato,et al.  Diversity of order and densities in jammed hard-particle packings. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  J. Mościński,et al.  The Force-Biased Algorithm for the Irregular Close Packing of Equal Hard Spheres , 1989 .

[29]  Keishi Gotoh,et al.  Statistical geometrical approach to random packing density of equal spheres , 1974, Nature.

[30]  D. Stoyan,et al.  Statistical Analysis of Simulated Random Packings of Spheres , 2002 .

[31]  Thomas M Truskett,et al.  Towards a quantification of disorder in materials: distinguishing equilibrium and glassy sphere packings , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  J. S. Reed,et al.  The packing density of binary powder mixtures , 1995 .

[33]  J. C. Schön,et al.  Simulation of random close packed discs and spheres , 1993 .