Cell-Free DNA from Ascites and Pleural Effusions: Molecular Insights into Genomic Aberrations and Disease Biology

Collection of cell-free DNA (cfDNA) from the blood of individuals with cancer has permitted noninvasive tumor genome analysis. Detection and characterization of cfDNA in ascites and pleural effusions have not yet been reported. Herein, we analyzed cfDNA in the ascites and pleural effusions from six individuals with metastatic cancer. In all cases, cfDNA copy number variations (CNV) were discovered within the effusate. One individual had a relevant alteration with a high copy amplification in EGFR in a never smoker with lung cancer, who showed only MDM2 and CDK4 amplification in a prior tissue biopsy. Another subject with metastatic breast cancer had cytology-positive ascites and an activating PIK3CA mutation identified in the tissue, blood, and ascites collectively. This individual had tumor regression after the administration of the mTOR inhibitor everolimus and had evidence of chromotripsis from chromosomal rearrangements noted in the cell-free ascitic fluid. These results indicate that cfDNA from ascites and pleural effusions may provide additional information not detected with tumor and plasma cell-free DNA molecular characterization, and a context for important insights into tumor biology and clonal dynamic change within primary tumor and metastatic deposits. Mol Cancer Ther; 16(5); 948–55. ©2017 AACR.

[1]  A. Garg,et al.  Correlative Analysis of Genetic Alterations and Everolimus Benefit in Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer: Results From BOLERO-2. , 2016, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[2]  C. Schumann,et al.  Necitumumab plus gemcitabine and cisplatin versus gemcitabine and cisplatin alone as first-line therapy in patients with stage IV squamous non-small-cell lung cancer (SQUIRE): an open-label, randomised, controlled phase 3 trial. , 2015, The Lancet. Oncology.

[3]  Bert Vogelstein,et al.  DETECTION OF CIRCULATING TUMOR DNA IN EARLY AND LATE STAGE HUMAN MALIGNANCIES , 2014 .

[4]  V. Velculescu,et al.  Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. , 2014, Cancer discovery.

[5]  F. Nicolantonio,et al.  Liquid biopsy: monitoring cancer-genetics in the blood , 2013, Nature Reviews Clinical Oncology.

[6]  J. Schiffman,et al.  Molecular inversion probes: a novel microarray technology and its application in cancer research. , 2012, Cancer genetics.

[7]  Johannes G. Reiter,et al.  The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers , 2012, Nature.

[8]  P. A. Futreal,et al.  Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. , 2012, The New England journal of medicine.

[9]  Huiling Li,et al.  Preclinical rationale for combining an EGFR antibody with cisplatin/gemcitabine for the treatment of NSCLC. , 2012, Cancer genomics & proteomics.

[10]  M. Piccart,et al.  Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. , 2012, The New England journal of medicine.

[11]  K. O'Byrne,et al.  EGFR expression as a predictor of survival for first-line chemotherapy plus cetuximab in patients with advanced non-small-cell lung cancer: analysis of data from the phase 3 FLEX study. , 2012, The Lancet. Oncology.

[12]  Yama W. L. Zheng,et al.  Maternal Plasma DNA Sequencing Reveals the Genome-Wide Genetic and Mutational Profile of the Fetus , 2010, Science Translational Medicine.

[13]  Stephen R Quake,et al.  Analysis of the size distributions of fetal and maternal cell-free DNA by paired-end sequencing. , 2010, Clinical chemistry.

[14]  P. Spellman,et al.  High quality copy number and genotype data from FFPE samples using Molecular Inversion Probe (MIP) microarrays , 2009, BMC Medical Genomics.

[15]  Patricia L. Harris,et al.  Epidermal growth factor receptor mutations and gene amplification in non-small-cell lung cancer: molecular analysis of the IDEAL/INTACT gefitinib trials. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[16]  F. Hirsch,et al.  Increased epidermal growth factor receptor gene copy number detected by fluorescence in situ hybridization associates with increased sensitivity to gefitinib in patients with bronchioloalveolar carcinoma subtypes: a Southwest Oncology Group Study. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[17]  Shiuan Chen,et al.  Dual Inhibition of mTOR and Estrogen Receptor Signaling In vitro Induces Cell Death in Models of Breast Cancer , 2005, Clinical Cancer Research.

[18]  P. Vogt,et al.  Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. , 2005, Proceedings of the National Academy of Sciences of the United States of America.