Computational fluid dynamics driven optimization of blended wing body aircraft

The blended wing body aircraft has aroused considerable interest as a potential candidate for future large subsonic transport air vehicles. In this paper, we present the results of one- and multipoint multiconstrained optimization of a blended wing body configuration for minimum total drag. The optimization technique includes a new strategy for efficient handling of nonlinear constraints in the framework of genetic algorithms, scanning of the optimization search space by a combination of full Navier-Stokes computations with reduced-order methods and multilevel parallelization of the whole computational framework. The assessment of the results shows that the proposed technology allows the design of feasible aerodynamic shapes that possess a low drag at cruise conditions, satisfy a large number of geometrical and aerodynamic constraints, and offer good off-design performance in markedly different flight conditions.

[1]  O. Pironneau,et al.  Applied Shape Optimization for Fluids , 2001 .

[2]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[3]  S. Peigin,et al.  Embedded Parallelization Approach for Optimization in Aerodynamic Design , 2004, The Journal of Supercomputing.

[4]  Alan Morris MOB A European Distributed Multi-Disciplinary Design and Optimisation Project , 2002 .

[5]  Jean-Gabriel Ganascia,et al.  Fast Convergence Thanks to Diversity , 1996, Evolutionary Programming.

[6]  Shigeru Obayashi,et al.  Multiobjective Genetic Algorithm for Multidisciplinary Design of Transonic Wing Planform , 1997 .

[7]  P. Hajela Nongradient Methods in Multidisciplinary Design Optimization-Status and Potential , 1999 .

[8]  R. M. Hicks,et al.  Wing Design by Numerical Optimization , 1977 .

[9]  S. Peigin,et al.  Robust handling of non‐linear constraints for GA optimization of aerodynamic shapes , 2004 .

[10]  Domenico Quagliarella,et al.  Inverse and Direct Airfoil Design Using a Multiobjective Genetic Algorithm , 1997 .

[11]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[12]  Mark Page,et al.  Blended Wing Body analysis and design , 1997 .

[13]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[14]  R. H. Liebeck,et al.  Design of the Blended Wing Body Subsonic Transport , 2002 .

[15]  Thomas Bäck,et al.  Genetic Algorithms and Evolution Strategies - Similarities and Differences , 1990, PPSN.

[16]  B. Epstein,et al.  Constrained Aerodynamic Optimization of Three-Dimensional Wings Driven by Navier-Stokes Computations , 2005 .

[17]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[18]  Friedrich L. Bauer,et al.  Supercritical Wing Sections II , 1974 .

[19]  Sergey Peigin,et al.  Implementation and Validation of the Spalart-Allmaras Turbulence Model in Parallel Environment , 2005 .

[20]  Armando Vavalle,et al.  Aerodynamic considerations of blended wing body aircraft , 2004 .

[21]  Boris Epstein,et al.  Accurate Multiblock Navier-Stokes Solver for Complex Aerodynamic Configurations , 2003 .

[22]  Robert Liebeck,et al.  BLENDED-WING-BODY SUBSONIC COMMERCIAL TRANSPORT , 1998 .

[23]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[24]  John K. Northrop,et al.  The Development of All–Wing Aircraft , 1947, The Journal of the Royal Aeronautical Society.

[25]  A. Jameson Optimum aerodynamic design using CFD and control theory , 1995 .