MOSFET gate leakage modeling and selection guide for alternative gate dielectrics based on leakage considerations

In this paper, we explore the scaling limits of alternative gate dielectrics based on their direct-tunneling characteristics and gate-leakage requirements for future CMOS technology generations. Important material parameters such as the tunneling effective mass are extracted from the direct-tunneling characteristics of several promising high-/spl kappa/ gate dielectrics for the first time. We also introduce a figure-of-merit for comparing the relative advantages of various gate dielectrics based on the gate-leakage current. Using an accurate direct-tunneling gate-current model and specifications from the International Technology Roadmap for Semiconductors (ITRS), we provide guidelines for the selection of gate dielectrics to satisfy the projected off-state leakage current requirements of future high-performance and low-power technologies.

[1]  C. Hu,et al.  Hole injection SiO/sub 2/ breakdown model for very low voltage lifetime extrapolation , 1994 .

[2]  Walter A. Harrison,et al.  Tunneling from an Independent-Particle Point of View , 1961 .

[3]  T. P. Ma,et al.  Making Silicon Nitride Film a Viable Gate Dielectric , 1998 .

[4]  D. Schlom,et al.  Thermodynamic stability of binary oxides in contact With silicon , 1996 .

[5]  T. Ma,et al.  Tunneling leakage current in oxynitride: dependence on oxygen/nitrogen content , 1998, IEEE Electron Device Letters.

[6]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[7]  Jack C. Lee,et al.  MOSFET devices with polysilicon on single-layer HfO/sub 2/ high-K dielectrics , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[8]  Chenming Hu,et al.  Dual-metal gate CMOS technology with ultrathin silicon nitride gate dielectric , 2001, IEEE Electron Device Letters.

[9]  T. Sugii,et al.  Low standby power CMOS with HfO/sub 2/ gate oxide for 100-nm generation , 2002, 2002 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.01CH37303).

[10]  J. Kim,et al.  Current transport in metal/hafnium oxide/silicon structure , 2002, IEEE Electron Device Letters.

[11]  Chenming Hu,et al.  Two silicon nitride technologies for post-SiO2 MOSFET gate dielectric , 2001, IEEE Electron Device Letters.

[12]  A. Stesmans,et al.  Trap-assisted tunneling in high permittivity gate dielectric stacks , 2000 .

[13]  C. Hu,et al.  Hole injection oxide breakdown model for very low voltage lifetime extrapolation , 1993, 31st Annual Proceedings Reliability Physics 1993.

[14]  E. Merzbacher Quantum mechanics , 1961 .

[15]  C. W. Chen,et al.  Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalate , 1999 .

[16]  Chenming Hu,et al.  Direct tunneling gate leakage current in transistors with ultrathin silicon nitride gate dielectric , 2000, IEEE Electron Device Letters.

[17]  Chenming Hu,et al.  Effects of high-/spl kappa/ gate dielectric materials on metal and silicon gate workfunctions , 2002, IEEE Electron Device Letters.

[18]  Qi Xiang,et al.  Scaling towards 35 nm gate length CMOS , 2001, 2001 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.01 CH37184).

[19]  Chih-Wei Yang,et al.  Downscaling limit of equivalent oxide thickness in formation of ultrathin gate dielectric by thermal-enhanced remote plasma nitridation , 2002 .

[20]  N. G. Tarr,et al.  An analytic model for the MIS tunnel junction , 1983, IEEE Transactions on Electron Devices.

[21]  Stefan De Gendt,et al.  Polarity effect on the temperature dependence of leakage current through HfO2/SiO2 gate dielectric stacks , 2002 .

[22]  C. Hu,et al.  Modeling CMOS tunneling currents through ultrathin gate oxide due to conduction- and valence-band electron and hole tunneling , 2001 .

[23]  J.C. Lee,et al.  MOSCAP and MOSFET characteristics using ZrO/sub 2/ gate dielectric deposited directly on Si , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[24]  T. Nigam,et al.  50 nm vertical replacement-gate (VRG) nMOSFETs with ALD HfO/sub 2/ and Al/sub 2/O/sub 3/ gate dielectrics , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[25]  Chenming Hu BSIM model for circuit design using advanced technologies , 2001, 2001 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.01CH37185).

[26]  Hongfa Luan,et al.  Ultra Thin (<20@ CVD Si3N4 Gate Dielectric for Deep-Sub-Micron CMOS Devices , 1998 .

[27]  M.F. Li,et al.  Hole tunneling current through oxynitride/oxide stack and the stack optimization for p-MOSFETs , 2002, IEEE Electron Device Letters.

[28]  D. Kwong,et al.  High quality ultra thin CVD HfO/sub 2/ gate stack with poly-Si gate electrode , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[29]  Hongfa Luan,et al.  Two Silicon Nitride Technologies for Post , 2001 .

[30]  H.-S. Philip Wong Beyond the conventional transistor , 2002, IBM J. Res. Dev..

[31]  J. Robertson Band offsets of wide-band-gap oxides and implications for future electronic devices , 2000 .