Universal small-scale structure near the boundary of siegel disks of arbitrary rotation number

Abstract We present numerical evidence that for analytic maps of the complex plane with a Siegel disk of any irrational rotation number and a quadratic critical point on its boundary, the small scale structure near the critical point can be described asymptotically by a universal two-parameter family. We propose an explanation in terms of an ergodic attractor for a renormalisation operator.

[1]  Farmer,et al.  Renormalization of the quasiperiodic transition to chaos for arbitrary winding numbers. , 1985, Physical review. A, General physics.

[2]  Robert S. MacKay,et al.  Boundary circles for area-preserving maps , 1986 .

[3]  Dominique Escande,et al.  Renormalization method for computing the threshold of the large-scale stochastic instability in two degrees of freedom Hamiltonian systems , 1981 .

[4]  Michael Widom,et al.  Renormalization group analysis of quasi-periodicity in analytic maps , 1983 .

[5]  M. Herman Are there critical points on the boundaries of singular domains? , 1985 .

[6]  S. Shenker,et al.  Quasiperiodicity in dissipative systems: A renormalization group analysis , 1983 .

[7]  Satija Universal strange attractor underlying Hamiltonian stochasticity. , 1987, Physical review letters.

[8]  Nicholas S. Manton,et al.  Universal scaling behaviour for iterated maps in the complex plane , 1983 .

[9]  David A. Rand,et al.  One-dimensional schrodinger equation with an almost periodic potential , 1983 .

[10]  D. K. Umberger,et al.  A universal strange attractor underlying the quasiperiodic transition to chaos , 1986 .

[11]  S. Shenker,et al.  Critical behavior of a KAM surface: I. Empirical results , 1982 .

[12]  Dima L. Shepelyansky,et al.  CORRELATION PROPERTIES OF DYNAMICAL CHAOS IN HAMILTONIAN SYSTEMS , 1984 .

[13]  Seunghwan Kim,et al.  Renormalization of Quasiperiodic Mappings , 1985 .

[14]  Bo Söderberg,et al.  Scaling Laws for Mode Lockings in Circle Maps , 1985 .

[15]  L. Jonker,et al.  Universal properties of maps of the circle with ɛ-singularities , 1983 .

[16]  M. Wortis,et al.  Iterative properties of a one-dimensional quartic map: Critical lines and tricritical behavior , 1981 .

[17]  C. Siegel,et al.  Iteration of Analytic Functions , 1942 .