TESTING GRAVITY WITH MOTION OF SATELLITES AROUND GALAXIES: NEWTONIAN GRAVITY AGAINST MODIFIED NEWTONIAN DYNAMICS

The motion of satellite galaxies around normal galaxies at distances 50–500 kpc provides a sensitive test for theories. We study the surface density and velocities of satellites around isolated red galaxies in the Sloan Digital Sky Survey. We find that the surface number density of satellites declines with the projected distance as a power law with the slope −1.5 to 2. The rms velocities gradually decline: observations exclude constant velocities at a ∼10σ level. We show that observational data strongly favor the standard model; all three major statistics of satellites—the number-density profile, the line-of-sight velocity dispersion, and the distribution function of the velocities—agree remarkably well with the predictions of the standard cosmological model. Thus, the success of the standard model extends to scales (50–500) kpc, much lower than what was previously considered. Modified Newtonian dynamics (MOND) fails on these scales for models which assume any single power-law number-density profile of satellites and any constant velocity anisotropy by predicting nearly constant rms velocities of satellites. Satellite data can be fit by fine-tuned models, which require (1) specific non-power-law density profile, (2) very radial orbits at large distances (velocity anisotropy β = 0.60.7 at R = 200–300 kpc), and (3) 2–2.5 times more stellar mass than what is found in the galaxies. The external gravity force—a necessary component for MOND—makes the situation even worse. We argue that a combination of satellite data and observational constraints on stellar masses make these models very problematic.

[1]  F. Combes,et al.  The velocity distribution of SDSS satellites in MOND , 2007, 0709.1966.

[2]  H. Shan,et al.  THE WEDDING OF MODIFIED DYNAMICS AND NON-EXOTIC DARK MATTER IN GALAXY CLUSTERS , 2007, 0706.1279.

[3]  F. Combes,et al.  The velocity distribution of Sloan Digital Sky Survey satellites in Modified Newtonian Dynamics , 2007 .

[4]  A. Cuesta,et al.  The virialized mass of dark matter haloes , 2007, 0710.5520.

[5]  S. White,et al.  Satellite galaxies and fossil groups in the Millennium Simulation , 2007, 0706.2009.

[6]  B. Famaey,et al.  Escaping from modified Newtonian dynamics , 2007, astro-ph/0702275.

[7]  R. Sanders,et al.  Confrontation of MOdified Newtonian Dynamics with the rotation curves of early-type disc galaxies , 2007, astro-ph/0703352.

[8]  C. Conselice,et al.  Evolution in the Halo Masses of Isolated Galaxies between z ~ 1 and z ~ 0: From DEEP2 to SDSS , 2006, astro-ph/0607204.

[9]  G. Stinson,et al.  Is There Evidence for Flat Cores in the Halos of Dwarf Galaxies? The Case of NGC 3109 and NGC 6822 , 2005, astro-ph/0509644.

[10]  D. Clowe,et al.  A Direct Empirical Proof of the Existence of Dark Matter , 2006, astro-ph/0608407.

[11]  U. Victoria,et al.  Hiding cusps in cores: kinematics of disc galaxies in triaxial dark matter haloes , 2006, astro-ph/0608376.

[12]  B. Famaey,et al.  Can MOND take a bullet? Analytical comparisons of three versions of MOND beyond spherical symmetry , 2006, astro-ph/0606216.

[13]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[14]  M. Mateo,et al.  Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. IV. Measurement for Sculptor , 2006, astro-ph/0601547.

[15]  F. Prada,et al.  The Draco dwarf in CDM and MOND , 2005, astro-ph/0508668.

[16]  A. Drake,et al.  The Proper Motion of the Large Magellanic Cloud Using HST , 2005, astro-ph/0508457.

[17]  J. Binney,et al.  Modified Newtonian dynamics in the Milky Way , 2005, astro-ph/0506723.

[18]  F. Prada,et al.  How Far Do They Go? The Outer Structure of Galactic Dark Matter Halos , 2005, astro-ph/0506432.

[19]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[20]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[21]  A. Macciò,et al.  The signature of dark energy on the local Hubble flow , 2004, astro-ph/0412583.

[22]  J. Bekenstein Relativistic gravitation theory for the modified newtonian dynamics paradigm , 2004 .

[23]  R. Nichol,et al.  The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.

[24]  J. Bekenstein Relativistic gravitation theory for the MOND paradigm , 2004, astro-ph/0403694.

[25]  Bhasker K. Moorthy,et al.  The Rotation Curves of Dwarf Galaxies: A Problem for Cold Dark Matter? , 2003, astro-ph/0311020.

[26]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[27]  R. Nichol,et al.  The 3D power spectrum of galaxies from the SDSS , 2003, astro-ph/0310725.

[28]  J. Brinkmann,et al.  Observing the Dark Matter Density Profile of Isolated Galaxies , 2003, astro-ph/0301360.

[29]  R. Rich,et al.  Age and Metallicity Distribution of the Galactic Bulge from Extensive Optical and Near-IR Stellar Photometry , 2002, astro-ph/0210660.

[30]  Robert H. Sanders,et al.  Modified Newtonian dynamics as an alternative to dark matter , 2002, astro-ph/0204521.

[31]  J. Anderson,et al.  Study of the anomalous acceleration of Pioneer 10 and 11 , 2001, gr-qc/0104064.

[32]  V. Rubin,et al.  High-resolution rotation curves of low surface brightness galaxies , 2002, astro-ph/0201276.

[33]  A. Melchiorri,et al.  A Measurement by BOOMERANG of Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background , 2001, astro-ph/0104460.

[34]  E. Bell,et al.  Stellar Mass-to-Light Ratios and the Tully-Fisher Relation , 2000, astro-ph/0008056.

[35]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[36]  Andreas Just,et al.  Dynamics of Star Clusters and the Milky Way , 2001 .

[37]  Walter A. Siegmund,et al.  The Luminosity Function of Galaxies in SDSS Commissioning Data , 2000, astro-ph/0012085.

[38]  R. Wyse,et al.  The Faint Optical Stellar Luminosity Function in the Ursa Minor Dwarf Spheroidal Galaxy , 1999, astro-ph/9902381.

[39]  S. White,et al.  The massive halos of spiral galaxies , 1994 .

[40]  B. Moore Evidence against dissipation-less dark matter from observations of galaxy haloes , 1994, Nature.

[41]  J. Primack,et al.  OBSERVATIONAL AND THEORETICAL CONSTRAINTS ON SINGULAR DARK MATTER HALOS , 1994, astro-ph/9402004.

[42]  J. Holtzman Microwave background anisotropies and large-scale structure in universes with cold dark matter, baryons, radiation, and massive and massless neutrinos , 1989 .

[43]  J. Bond,et al.  Cosmic Fluctuation Spectra with Large-Scale Power , 1987 .

[44]  M. Milgrom A modification of the newtonian dynamics as a possible alternative to the hidden mass hypothesis , 1983 .