The large scale geometry of strongly aperiodic subshifts of finite type

A subshift on a group G is a closed, G-invariant subset of A^G, for some finite set A. It is said to be a subshift of finite type (SFT) if it is defined by a finite collection of 'forbidden patterns', to be strongly aperiodic if all point stabilizers are trivial, and weakly aperiodic if all point stabilizers are infinite index in G. We show that groups with at least 2 ends have a strongly aperiodic SFT, and that having such an SFT is a QI invariant for finitely presented torsion free groups. We show that a finitely presented torsion free group with no weakly aperiodic SFT must be QI-rigid. The domino problem on G asks whether the SFT specified by a given set of forbidden patterns is empty. We show that decidability of the domino problem is a QI invariant.

[1]  David E. Muller,et al.  The Theory of Ends, Pushdown Automata, and Second-Order Logic , 1985, Theor. Comput. Sci..

[2]  David E. Muller,et al.  Groups, the Theory of Ends, and Context-Free Languages , 1983, J. Comput. Syst. Sci..

[3]  Emmanuel Jeandel Translation-like Actions and Aperiodic Subshifts on Groups , 2015, ArXiv.

[4]  Alexis Ballier,et al.  The domino problem on groups of polynomial growth , 2013, 1311.4222.

[5]  Shahar Mozes,et al.  Aperiodic tilings , 1997 .

[6]  S. Piantadosi Symbolic dynamics on free groups , 2007 .

[7]  A. Penland,et al.  Periodic Points on Shifts of Finite Type and Commensurability Invariants of Groups , 2015, 1502.03195.

[8]  R. Robinson Undecidability and nonperiodicity for tilings of the plane , 1971 .

[9]  Hao Wang Proving theorems by pattern recognition — II , 1961 .

[10]  Emmanuel Jeandel,et al.  Aperiodic Subshifts of Finite Type on Groups , 2015 .

[11]  John Stallings,et al.  On Torsion-Free Groups with Infinitely Many Ends , 1968 .

[12]  H. Hopf,et al.  Enden offener Räume und unendliche diskontinuierliche Gruppen , 1943 .

[13]  Jarkko Kari,et al.  An Aperiodic Set of Wang Cubes , 1996, J. Univers. Comput. Sci..

[14]  Markus Lohrey,et al.  Logical aspects of Cayley-graphs: the group case , 2005, Ann. Pure Appl. Log..

[15]  Robert L. Berger The undecidability of the domino problem , 1966 .

[16]  Chaim Goodman-Strauss A strongly aperiodic set of tiles in the hyperbolic plane , 2005 .

[17]  Jarkko Kari,et al.  Tiling Problems on Baumslag-Solitar groups , 2013, MCU.

[18]  David B. A. Epstein,et al.  Word processing in groups , 1992 .

[19]  Michel Coornaert,et al.  Cellular Automata and Groups , 2010, Encyclopedia of Complexity and Systems Science.

[20]  A. Papadopoulos,et al.  Symbolic Dynamics and Hyperbolic Groups , 1993 .

[21]  Andrew S. Glassner,et al.  Aperiodic Tiling , 1998, IEEE Computer Graphics and Applications.

[22]  Noel Brady,et al.  Morse theory and finiteness properties of groups , 1997 .

[23]  Emmanuel Jeandel Some Notes about Subshifts on Groups , 2015, ArXiv.

[24]  Guillaume Theyssier,et al.  Subshifts, Languages and Logic , 2009, Developments in Language Theory.

[25]  Shmuel Weinberger,et al.  Aperiodic tilings, positive scalar curvature, and amenability of spaces , 1992 .