Intuitionist type theory and the free topos
暂无分享,去创建一个
[1] Philip J. Scott,et al. Intuitionist type theory and foundations , 1981, J. Philos. Log..
[2] J. Lambek. From types to sets , 1980 .
[3] M. Coste,et al. Contribution to the study of the natural number object in elementary Topoi , 1980 .
[4] Elliott Mendelson,et al. Introduction to Mathematical Logic , 1979 .
[5] M. Fourman. The Logic of Topoi , 1977 .
[6] Solomon Feferman,et al. Theories of Finite Type Related to Mathematical Practice , 1977 .
[7] J. Lambek. Functional completeness of cartesian categories , 1974 .
[8] A. Troelstra. Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .
[9] A. S. Troelstra,et al. Notes on intuitionistic second order arithmetic , 1973 .
[10] J. Myhill,et al. Some properties of intuitionistic zermelo-frankel set theory , 1973 .
[11] H. Friedman. Some applications of Kleene's methods for intuitionistic systems , 1973 .
[12] John Staples. Combinator realizability of constructive finite type analysis , 1973 .
[13] S. Maclane,et al. Categories for the Working Mathematician , 1971 .
[14] J. Heijenoort. From Frege To Gödel , 1967 .
[15] Joseph R. Shoenfield,et al. Mathematical logic , 1967 .
[16] Von Kurt Gödel,et al. ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .
[17] S. C. Kleene,et al. Introduction to Metamathematics , 1952 .