Solitary waves in nonautonomous nonlinear and dispersive systems: nonautonomous solitons

The fundamental concept of colored nonautonomous solitons in nonlinear and dispersive nonautonomous physical systems is introduced. Novel soliton solutions for the nonautonomous nonlinear Schrödinger equation models with linear and harmonic oscillator potentials substantially extend the concept of classical solitons and generalize it to the plethora of nonautonomous solitons that interact elastically and generally move with varying amplitudes, speeds and spectra adapted both to the external potentials and to the dispersion and nonlinearity variations. The parallels between nonlinear guided wave phenomena in optics and nonlinear guided wave phenomena in Bose condensates are clearly demonstrated by considering optical and matter wave soliton dynamics in the framework of nonautonomous evolution equations. The exact analytical solutions and numerical experiments reveal many specific features of nonautonomous solitons. Fundamental laws of the soliton adaptation to the external potentials are derived. Bound states of colored nonautonomous solitons are studied in detail and a comparison of the canonical Satsuma–Yajima breather dynamics with a nonautonomous ‘agitated’ breather is presented. The nonautonomous soliton concept can be applied to different physical systems, from hydrodynamics and plasma physics to nonlinear optics and matter waves, and offer many opportunities for further scientific studies

[1]  H. Shin Darboux invariants of integrable equations with variable spectral parameters , 2008 .

[2]  Lei Wu,et al.  Controllable exact self-similar evolution of the Bose–Einstein condensate , 2008 .

[3]  G. Fu,et al.  Nonautonomous solitons of Bose–Einstein condensation in a linear potential with an arbitrary time-dependence , 2009, 1012.5475.

[4]  L. Kovachev Beyond the spatio-temporal model in femtosecond optics , 2008 .

[5]  Juanfeng Wang,et al.  Nonlinear tunneling of optical similaritons in nonlinear waveguides , 2008 .

[6]  Govind P. Agrawal,et al.  Applications of Nonlinear Fiber Optics , 2001 .

[7]  Hasegawa,et al.  Novel soliton solutions of the nonlinear Schrodinger equation model , 2000, Physical review letters.

[8]  Milivoj Belić,et al.  Analytical light bullet solutions to the generalized (3+1)-dimensional nonlinear Schrödinger equation. , 2008, Physical review letters.

[9]  J. R. Taylor,et al.  Optical Solitons: Contents , 1992 .

[10]  D. Bazeia,et al.  Solitons with cubic and quintic nonlinearities modulated in space and time. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[12]  Tao Xu,et al.  Symbolic-computation construction of transformations for a more generalized nonlinear Schrödinger equation with applications in inhomogeneous plasmas, optical fibers, viscous fluids and Bose-Einstein condensates , 2007 .

[13]  Lu Li,et al.  Dark solitons on an intense parabolic background in nonlinear waveguides , 2008 .

[14]  J. Satsuma,et al.  B Initial Value Problems of One-Dimensional self-Modulation of Nonlinear Waves in Dispersive Media (Part V. Initial Value Problems) , 1975 .

[15]  J. R. Taylor,et al.  Optical Solitons: Theory and Experiment , 2005 .

[16]  G. Agrawal,et al.  Do solitonlike self-similar waves exist in nonlinear optical media? , 2006, Physical review letters.

[17]  L. Lugiato,et al.  Adiabatic elimination in nonlinear dynamical systems , 1984 .

[18]  Lei Wu,et al.  Self-similar parabolic pulses in optical fiber amplifiers with gain dispersion and gain saturation , 2008 .

[19]  H. Haken Synergetics: Introduction and Advanced Topics , 2004 .

[20]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[21]  V. Serkin,et al.  Parametric resonance for solitons in the nonlinear Schrödinger equation model with time-dependent harmonic oscillator potential , 2007 .

[22]  J. R. Taylor,et al.  Wavelength and duration tunable subpicosecond source using adiabatic Raman compression , 2001, CLEO 2001.

[23]  R. Hao,et al.  Exact multi-soliton solutions in nonlinear optical systems , 2008 .

[24]  Vladimir N. Serkin,et al.  Optimal control of optical soliton parameters: Part 1. The Lax representation in the problem of soliton management , 2001 .

[25]  N. Zabusky,et al.  Gradient-Induced Fission of Solitons , 1971 .

[26]  K. Porsezian,et al.  Soliton Interaction Under Soliton Dispersion Management , 2008, IEEE Journal of Quantum Electronics.

[27]  J R Taylor,et al.  Optical pulse compression in dispersion decreasing photonic crystal fiber. , 2007, Optics express.

[28]  N. Zabusky,et al.  Fermi-Pasta-Ulam, solitons and the fabric of nonlinear and computational science: history, synergetics, and visiometrics. , 2005, Chaos.

[29]  Dun Zhao,et al.  Engineering integrable nonautonomous nonlinear Schrödinger equations. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  K. Porsezian,et al.  Similariton interactions in nonlinear graded-index waveguide amplifiers , 2008 .

[31]  Phase fluctuations of linearly chirped solitons in a noisy optical fiber channel with varying dispersion, nonlinearity, and gain. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[33]  Hong-Gang Luo,et al.  Transformation from the nonautonomous to standard NLS equations , 2008, 0807.1192.

[34]  James P. Gordon,et al.  Experimental observation of picosecond pulse narrowing and solitons in optical fibers (A) , 1980 .

[35]  Bo Tian,et al.  Types of solutions of the variable-coefficient nonlinear Schrödinger equation with symbolic computation. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Hermann A. Haus,et al.  Solitons in optical communications , 1996 .

[37]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Appendix. Fundamental constants and conversion factors , 2008 .

[38]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[39]  Lu Li,et al.  Dark-soliton stripes on a paraboloidal background in a bulk nonlinear medium , 2009 .

[40]  Chuan-Sheng Liu,et al.  Solitons in nonuniform media , 1976 .

[41]  Antonio Degasperis,et al.  Coupled nonlinear evolution equations solvable via the inverse spectral transform, and solitons that come back: the boomeron , 1976 .

[42]  C. Wieman,et al.  Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments , 2002 .

[43]  W. Ketterle Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser* , 2002 .

[44]  Hong-Gang Luo,et al.  Integrability of the Gross-Pitaevskii Equation with Feshbach Resonance management , 2008, 0808.3865.

[45]  L. Debnath Solitons and the Inverse Scattering Transform , 2012 .

[46]  Dun Zhao,et al.  Exactly controllable transmission of nonautonomous optical solitons , 2009 .

[47]  Lei Wu,et al.  Controllable generation and propagation of asymptotic parabolic optical waves in graded-index waveguide amplifiers , 2008 .

[48]  A. Hasegawa,et al.  Nonautonomous matter-wave solitons near the Feshbach resonance , 2010 .

[49]  Xiaohong Yan,et al.  Exact Bright Self-Similar Solitary Waves in AN Expulsive Parabolic Potential , 2009 .

[50]  G. New Laser Physics and Laser Instabilities , 1989 .

[51]  J. R. Clark Optical communications , 1977, Proceedings of the IEEE.

[52]  J. Krumhansl Unity in the Science of Physics , 1991 .

[53]  Akira Hasegawa,et al.  Nonautonomous solitons in external potentials. , 2007, Physical review letters.

[54]  Prasanta K Panigrahi,et al.  Class of solitary wave solutions of the one-dimensional Gross-Pitaevskii equation. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  Adrian Ankiewicz,et al.  Solitons : nonlinear pulses and beams , 1997 .