A hybrid data mining metaheuristic for the p‐median problem

Metaheuristics represent an important class of techniques to solve, approximately, hard combinatorial optimization problems for which the use of exact methods is impractical. In this work, we propose a hybrid version of the Greedy Randomized Adaptive Search Procedures (GRASP) metaheuristic, which incorporates a data mining process, to solve the p-median problem. We believe that patterns obtained by a data mining technique, from a set of suboptimal solutions of a combinatorial optimization problem, can be used to guide metaheuristic procedures in the search for better solutions. Traditional GRASP is an iterative metaheuristic which returns the best solution reached over all iterations. In the hybrid GRASP proposal, after executing a significant number of iterations, the data mining process extracts patterns from an elite set of suboptimal solutions for the p-median problem. These patterns present characteristics of near optimal solutions and can be used to guide the following GRASP iterations in the search through the combinatorial solution space. Computational experiments, comparing traditional GRASP and different data mining hybrid proposals for the p-median problem, showed that employing patterns mined from an elite set of suboptimal solutions made the hybrid GRASP find better results. Besides, the conducted experiments also evidenced that incorporating a data mining technique into a metaheuristic accelerated the process of finding near optimal and optimal solutions. © 2011 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 2011 © 2011 Wiley Periodicals, Inc.

[1]  Mauricio G. C. Resende,et al.  Grasp: An Annotated Bibliography , 2002 .

[2]  Pierre Hansen,et al.  The p-median problem: A survey of metaheuristic approaches , 2005, Eur. J. Oper. Res..

[3]  El-Ghazali Talbi,et al.  A Taxonomy of Hybrid Metaheuristics , 2002, J. Heuristics.

[4]  Saïd Salhi,et al.  A cellular heuristic for the multisource Weber problem , 2003, Comput. Oper. Res..

[5]  J. Beasley A note on solving large p-median problems , 1985 .

[6]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[7]  Mauricio G. C. Resende,et al.  An Annotated Bibliography of Grasp Part Ii: Applications , 2022 .

[8]  Paul H. Calamai,et al.  A projection method forlp norm location-allocation problems , 1994, Math. Program..

[9]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[10]  Jian Pei,et al.  Mining frequent patterns without candidate generation , 2000, SIGMOD '00.

[11]  Bart Goethals,et al.  Advances in frequent itemset mining implementations: report on FIMI'03 , 2004, SKDD.

[12]  Gilbert Laporte,et al.  Metaheuristics: A bibliography , 1996, Ann. Oper. Res..

[13]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[14]  Fabrizio Silvestri,et al.  Adaptive and resource-aware mining of frequent sets , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[15]  Timothy J. Lowe,et al.  Location on Networks: A Survey. Part I: The p-Center and p-Median Problems , 1983 .

[16]  O. Kariv,et al.  An Algorithmic Approach to Network Location Problems. II: The p-Medians , 1979 .

[17]  Said Salhi Heuristic Search: The Science of Tomorrow , 2006 .

[18]  Celso C. Ribeiro,et al.  TTT plots: a perl program to create time-to-target plots , 2007, Optim. Lett..

[19]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[20]  Andrea Lodi,et al.  An evolutionary heuristic for quadratic 0-1 programming , 1999, Eur. J. Oper. Res..

[21]  Alexandre Plastino,et al.  Hybridization of GRASP Metaheuristic with Data Mining Techniques , 2006, J. Math. Model. Algorithms.

[22]  Bart Goethals,et al.  Advances in Frequent Itemset Mining Implementations: Introduction to FIMI03 , 2003, FIMI.

[23]  Celso C. Ribeiro,et al.  On the Use of Run Time Distributions to Evaluate and Compare Stochastic Local Search Algorithms , 2009, SLS.

[24]  Gösta Grahne,et al.  Efficiently Using Prefix-trees in Mining Frequent Itemsets , 2003, FIMI.

[25]  M. Resende,et al.  A probabilistic heuristic for a computationally difficult set covering problem , 1989 .

[26]  Mauricio G. C. Resende,et al.  An Annotated Bibliography of Grasp Part I: Algorithms , 2022 .

[27]  Alexandre Plastino,et al.  NGL01-4: A Hybrid GRASP with Data Mining for Efficient Server Replication for Reliable Multicast , 2006, IEEE Globecom 2006.

[28]  Fred Glover,et al.  Improved Constructive Multistart Strategies for the Quadratic Assignment Problem Using Adaptive Memory , 1999, INFORMS J. Comput..

[29]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[30]  Alexandre Plastino,et al.  Applications of the DM-GRASP heuristic: a survey , 2008, Int. Trans. Oper. Res..

[31]  Alexandre Plastino,et al.  A Hybrid GRASP with Data Mining for the Maximum Diversity Problem , 2005, Hybrid Metaheuristics.

[32]  S. L. HAKIMIt AN ALGORITHMIC APPROACH TO NETWORK LOCATION PROBLEMS. , 1979 .

[33]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[34]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.