Nonconvex penalization of switching control of partial differential equations

Abstract This paper is concerned with optimal control problems for parabolic partial differential equations with pointwise in time switching constraints on the control. A standard approach to treat constraints in nonlinear optimization is penalization, in particular using L 1 -type norms. Applying this approach to the switching constraint leads to a nonsmooth and nonconvex infinite-dimensional minimization problem which is challenging both analytically and numerically. Adding H 1 regularization or restricting to a finite-dimensional control space allows showing existence of optimal controls. First-order necessary optimality conditions are then derived using tools of nonsmooth analysis. Their solution can be computed using a combination of Moreau–Yosida regularization and a semismooth Newton method. Numerical examples illustrate the properties of this approach.

[1]  Ivan P. Gavrilyuk,et al.  Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..

[2]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[3]  Robert Shorten,et al.  Stability Criteria for Switched and Hybrid Systems , 2007, SIAM Rev..

[4]  K. Kunisch,et al.  A duality-based approach to elliptic control problems in non-reflexive Banach spaces , 2011 .

[5]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[6]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[7]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[8]  Jiongmin Yong,et al.  Optimal switching for partial differential equations II , 1989 .

[9]  Stefan Wendl,et al.  Optimal Control of Partial Differential Equations , 2021, Applied Mathematical Sciences.

[10]  Michael Ulbrich,et al.  Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces , 2011, MOS-SIAM Series on Optimization.

[11]  Jiongmin Yong,et al.  Optimal switching for partial differential equations I , 1989 .

[12]  Karl Kunisch,et al.  Constrained Dirichlet Boundary Control in L2 for a Class of Evolution Equations , 2007, SIAM J. Control. Optim..

[13]  L. Evans,et al.  Optimal Switching for Ordinary Differential Equations , 1984 .

[14]  Martin Gugat,et al.  Optimal switching boundary control of a string to rest in finite time , 2008 .

[15]  C. Clason,et al.  A convex penalty for switching control of partial differential equations , 2016, Syst. Control. Lett..

[16]  F. Clarke Functional Analysis, Calculus of Variations and Optimal Control , 2013 .

[17]  K. Kunisch,et al.  A convex analysis approach to optimal controls with switching structure for partial differential equations , 2016, 1702.07540.

[18]  Valentina E. Balas,et al.  On the Switching Control , 2009 .

[19]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[20]  Christian Clason,et al.  Optimal control of elliptic equations with positive measures , 2017, 1702.07528.

[21]  Thomas I. Seidman Optimal control of a diffusion/reaction/switching system , 2013 .

[22]  Joachim Rehberg,et al.  Maximal parabolic regularity for divergence operators including mixed boundary conditions , 2008, 0903.0239.

[23]  Lijuan Wang,et al.  Time Optimal Controls of Semilinear Heat Equation with Switching Control , 2015, J. Optim. Theory Appl..

[24]  Karl Kunisch,et al.  Optimal control for an elliptic system with convex polygonal control constraints , 2013 .

[25]  Falk M. Hante,et al.  Modeling and Analysis of Modal Switching in Networked Transport Systems , 2009 .

[26]  Qi Lü ROBUST NULL CONTROLLABILITY FOR HEAT EQUATIONS WITH UNKNOWN SWITCHING CONTROL MODE , 2014 .

[27]  Sebastian Sager,et al.  Relaxation methods for mixed-integer optimal control of partial differential equations , 2012, Computational Optimization and Applications.

[28]  Karl Kunisch,et al.  A measure space approach to optimal source placement , 2012, Comput. Optim. Appl..