A nonsmooth equation system solver based on subgradient method

In this paper, a subgradient method is developed to solve the system of (nonsmooth) equations. First, the system of (nonsmooth) equations is transformed into a nonsmooth optimization problem with zero minimal objective function value. Then, a subgradient method is applied to solve the nonsmooth optimization problem. During the processes, the pre-known optimal objective function value is adopted to update step sizes. Several numerical experiments show that the proposed method is efficient and robust.

[1]  Adi Ben-Israel A modified newton-raphson method for the solution of systems of equations , 1965 .

[2]  S. M. Robinson Generalized equations and their solutions, Part I: Basic theory , 1979 .

[3]  Pu-yan Nie,et al.  An SQP approach with line search for a system of nonlinear equations , 2006, Math. Comput. Model..

[4]  Jong-Shi Pang,et al.  Nonsmooth Equations: Motivation and Algorithms , 1993, SIAM J. Optim..

[5]  Xiaojun Chen,et al.  A verification method for solutions of nonsmooth equations , 1997, Computing.

[6]  Defeng Sun,et al.  Newton and Quasi-Newton Methods for a Class of Nonsmooth Equations and Related Problems , 1997, SIAM J. Optim..

[7]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[8]  Huifu Xu,et al.  Approximate Newton Methods for Nonsmooth Equations , 1997 .

[9]  Naum Zuselevich Shor,et al.  Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.

[10]  Adi Ben-Israel A Newton-Raphson method for the solution of systems of equations , 1966 .

[11]  Pu-yan Nie A derivative-free method for the system of nonlinear equations , 2006 .

[12]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[13]  N. Josephy Newton's Method for Generalized Equations. , 1979 .

[14]  Jong-Shi Pang,et al.  Iterative methods for variational and complementarity problems , 1982, Math. Program..

[15]  J. M. Martínez,et al.  Inexact Newton methods for solving nonsmooth equations , 1995 .

[16]  Adil M. Bagirov,et al.  A quasisecant method for minimizing nonsmooth functions , 2010, Optim. Methods Softw..

[17]  Musa A. Mammadov,et al.  A filled function method for nonlinear equations , 2007, Appl. Math. Comput..

[18]  L. Qi,et al.  A Survey of Some Nonsmooth Equations and Smoothing Newton Methods , 1999 .

[19]  Changzhi Wu,et al.  A quasisecant method for solving a system of nonsmooth equations , 2013, Comput. Math. Appl..

[20]  Zhi-You Wu,et al.  A Novel Filled Function Method and Quasi-Filled Function Method for Global Optimization , 2006, Comput. Optim. Appl..

[21]  Kok Lay Teo,et al.  New Modified Function Method for Global Optimization , 2005 .

[22]  C. T. Kelley,et al.  Pseudo-Transient Continuation for Nonsmooth Nonlinear Equations , 2005, SIAM J. Numer. Anal..

[23]  M. Fukushima,et al.  Nonsmooth Equation Based BFGS Method for Solving KKT Systems in Mathematical Programming , 2001 .

[24]  Defeng Sun,et al.  Secant methods for semismooth equations , 1998, Numerische Mathematik.

[25]  Yongjian Yang,et al.  A new filled function method for nonlinear equations , 2009, Appl. Math. Comput..

[26]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[27]  Jong-Shi Pang,et al.  Newton's Method for B-Differentiable Equations , 1990, Math. Oper. Res..

[28]  Liqun Qi,et al.  Trust Region Algorithms for Solving Nonsmooth Equations , 1995, SIAM J. Optim..