Escherichia coli Transcriptome Dynamics during the Transition from Anaerobic to Aerobic Conditions*

Escherichia coli is a metabolically versatile bacterium that is able to grow in the presence and absence of oxygen. Several previous transcript-profiling experiments have compared separate anaerobic and aerobic cultures. Here the process of adaptation was investigated by determining changes in transcript profiles when anaerobic steady-state cultures were perturbed by the introduction of air. Within 5 min of culture aeration the abundances of transcripts associated with anaerobic metabolism were decreased, whereas transcripts associated with aerobic metabolism were increased. In addition to the rapid switch to aerobic central metabolism, transcript profiling, supported by experiments with relevant mutants, revealed transient changes suggesting that the peroxide stress response, methionine biosynthesis, and degradation of putrescine play important roles during the adaptation to aerobic conditions.

[1]  J. Bongaerts,et al.  Transcriptional regulation of the proton translocating NADH dehydrogenase (nuoA‐N) of Escherichia coli by electron acceptors, electron donors and gene regulators , 1995, Molecular microbiology.

[2]  I. L. Jung,et al.  Polyamines reduce paraquat-induced soxS and its regulon expression in Escherichia coli , 2003, Cell Biology and Toxicology.

[3]  E. Lang,et al.  Spezifische Farbreaktion zum direkten Nachweis der Ameisensäure , 1972 .

[4]  J. Rosner,et al.  Structural requirements for marbox function in transcriptional activation of mar/sox/rob regulon promoters in Escherichia coli: sequence, orientation and spatial relationship to the core promoter , 1999, Molecular microbiology.

[5]  A. Emili,et al.  Interaction network containing conserved and essential protein complexes in Escherichia coli , 2005, Nature.

[6]  P. Jordan,et al.  Biochemical and spectroscopic characterization of Escherichia coli aconitases (AcnA and AcnB). , 1999, The Biochemical journal.

[7]  Hideyuki Suzuki,et al.  A Novel Putrescine Utilization Pathway Involves γ-Glutamylated Intermediates of Escherichia coli K-12* , 2005, Journal of Biological Chemistry.

[8]  D. Clark,et al.  The fermentation pathways of Escherichia coli. , 1989, FEMS microbiology reviews.

[9]  W. Sauerbier,et al.  Dependence of the putrescine content of Escherichia coli on the osmotic strength of the medium. , 1972, The Journal of biological chemistry.

[10]  D. Ladant,et al.  A bacterial two-hybrid system based on a reconstituted signal transduction pathway. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[11]  I. Beacham,et al.  Transcriptional co‐activation at the ansB promoters: involvement of the activating regions of CRP and FNR when bound in tandem , 1995, Molecular microbiology.

[12]  S. Park,et al.  Aerobic regulation of the sucABCD genes of Escherichia coli, which encode alpha-ketoglutarate dehydrogenase and succinyl coenzyme A synthetase: roles of ArcA, Fnr, and the upstream sdhCDAB promoter , 1997, Journal of bacteriology.

[13]  Frederick R. Blattner,et al.  Genome-Wide Expression Analysis Indicates that FNR of Escherichia coli K-12 Regulates a Large Number of Genes of Unknown Function , 2005, Journal of bacteriology.

[14]  E. Lennox,et al.  Transduction of linked genetic characters of the host by bacteriophage P1. , 1955, Virology.

[15]  Jeffrey Green,et al.  Bacterial redox sensors , 2004, Nature Reviews Microbiology.

[16]  Steven T Pullan,et al.  Transcriptional Responses of Escherichia coli to S-Nitrosoglutathione under Defined Chemostat Conditions Reveal Major Changes in Methionine Biosynthesis* , 2005, Journal of Biological Chemistry.

[17]  J. Imlay A metabolic enzyme that rapidly produces superoxide, fumarate reductase of Escherichia coli. , 1995, The Journal of biological chemistry.

[18]  Robert A. LaRossa,et al.  DNA Microarray-Mediated Transcriptional Profiling of the Escherichia coli Response to Hydrogen Peroxide , 2001, Journal of bacteriology.

[19]  Lars I Leichert,et al.  Protein Thiol Modifications Visualized In Vivo , 2004, PLoS biology.

[20]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .

[21]  Yue-qin Tang,et al.  Switching aconitase B between catalytic and regulatory modes involves iron‐dependent dimer formation , 2005, Molecular microbiology.

[22]  Paul A Hoskisson,et al.  Continuous culture--making a comeback? , 2005, Microbiology.

[23]  H Tabor,et al.  Polyamines in microorganisms. , 1985, Microbiological reviews.

[24]  Lesley Griffiths,et al.  A Reassessment of the FNR Regulon and Transcriptomic Analysis of the Effects of Nitrate, Nitrite, NarXL, and NarQP as Escherichia coli K12 Adapts from Aerobic to Anaerobic Growth* , 2006, Journal of Biological Chemistry.

[25]  Victoria R. Sutton,et al.  Kinetic Analysis of the Oxidative Conversion of the [4Fe-4S]2+ Cluster of FNR to a [2Fe-2S]2+ Cluster , 2004, Journal of bacteriology.

[26]  D. Tempest,et al.  Chapter XIII The Continuous Cultivation of Micro-organisms: 2. Construction of a Chemostat , 1970 .

[27]  Ching-Ping Tseng,et al.  Oxygen- and Growth Rate-Dependent Regulation ofEscherichia coli Fumarase (FumA, FumB, and FumC) Activity , 2001, Journal of bacteriology.

[28]  Andrew Travers,et al.  DNA supercoiling — a global transcriptional regulator for enterobacterial growth? , 2005, Nature Reviews Microbiology.

[29]  Yue-qin Tang,et al.  Post‐transcriptional regulation of bacterial motility by aconitase proteins , 2004, Molecular microbiology.

[30]  G. W. Hatfield,et al.  Global Gene Expression Profiling in Escherichia coli K12 , 2003, Journal of Biological Chemistry.

[31]  J. Imlay,et al.  The regulation and role of the periplasmic copper, zinc superoxide dismutase of Escherichia coli , 1999, Molecular microbiology.

[32]  J. Imlay How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. , 2002, Advances in microbial physiology.

[33]  G. Storz,et al.  Activation of the OxyR transcription factor by reversible disulfide bond formation. , 1998, Science.

[34]  B. Py,et al.  How Escherichia coli and Saccharomyces cerevisiae build Fe/S proteins. , 2005, Advances in microbial physiology.

[35]  F. Neidhardt,et al.  Escherichia Coli and Salmonella: Typhimurium Cellular and Molecular Biology , 1987 .

[36]  B. Demple,et al.  Metabolic Sources of Hydrogen Peroxide in Aerobically Growing Escherichia coli(*) , 1995, The Journal of Biological Chemistry.

[37]  K. Hellingwerf,et al.  Effects of Limited Aeration and of the ArcAB System on Intermediary Pyruvate Catabolism in Escherichia coli , 2000, Journal of bacteriology.

[38]  J. Guest,et al.  Transcription and transcript processing in the sdhCDAB-sucABCD operon of Escherichia coli. , 1998, Microbiology.

[39]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[40]  J. Guest,et al.  Two genetically-distinct and differentially-regulated aconitases (AcnA and AcnB) in Escherichia coli. , 1994, Microbiology.

[41]  P. Pomposiello,et al.  Genome-Wide Transcriptional Profiling of theEscherichia coli Responses to Superoxide Stress and Sodium Salicylate , 2001, Journal of bacteriology.

[42]  R. Gunsalus,et al.  Contribution of the fnr and arcA gene products in coordinate regulation of cytochrome o and d oxidase (cyoABCDE and cydAB) genes in Escherichia coli. , 1992, FEMS microbiology letters.

[43]  R. Matthews,et al.  Oxidative Stress Inactivates Cobalamin-Independent Methionine Synthase (MetE) in Escherichia coli , 2004, PLoS biology.

[44]  Yue-qin Tang,et al.  E. coli aconitase B structure reveals a HEAT-like domain with implications for protein–protein recognition , 2002, Nature Structural Biology.

[45]  C. W. Tabor,et al.  Polyamines protect Escherichia coli cells from the toxic effect of oxygen , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Thomas D. Schneider,et al.  OxyR and SoxRS Regulation offur , 1999, Journal of bacteriology.

[47]  Juan Aguilar,et al.  The Gene yjcG, Cotranscribed with the Gene acs, Encodes an Acetate Permease in Escherichia coli , 2003, Journal of bacteriology.

[48]  U. Sauer,et al.  Impact of Global Transcriptional Regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on Glucose Catabolism in Escherichia coli , 2005, Journal of bacteriology.

[49]  C. Bernofsky,et al.  An improved cycling assay for nicotinamide adenine dinucleotide. , 1973, Analytical biochemistry.

[50]  A. S. Lynch,et al.  Regulation of Gene Expression in Escherichia coli , 1996, Springer US.

[51]  Markus J. Herrgård,et al.  Integrating high-throughput and computational data elucidates bacterial networks , 2004, Nature.

[52]  C. Higgins,et al.  DNA supercoiling and the anaerobic and growth phase regulation of tonB gene expression , 1988, Journal of bacteriology.

[53]  F. Blattner,et al.  IscR‐dependent gene expression links iron‐sulphur cluster assembly to the control of O2‐regulated genes in Escherichia coli , 2006, Molecular microbiology.

[54]  J. Imlay,et al.  Are Respiratory Enzymes the Primary Sources of Intracellular Hydrogen Peroxide?* , 2004, Journal of Biological Chemistry.

[55]  E. Lin,et al.  Quinones as the Redox Signal for the Arc Two-Component System of Bacteria , 2001, Science.

[56]  I. Kim,et al.  Transcription of ahpC, katG, and katE genes in Escherichia coli is regulated by polyamines: polyamine-deficient mutant sensitive to H2O2-induced oxidative damage. , 2003, Biochemical and biophysical research communications.

[57]  R. Gunsalus,et al.  Interplay between three global regulatory proteins mediates oxygen regulation of the Escherichia coli cytochrome d oxidase (cydAB) operon , 2000, Molecular microbiology.

[58]  S. Park,et al.  Oxygen, iron, carbon, and superoxide control of the fumarase fumA and fumC genes of Escherichia coli: role of the arcA, fnr, and soxR gene products , 1995, Journal of bacteriology.

[59]  Yue-qin Tang,et al.  Contrasting Sensitivities of Escherichia coli Aconitases A and B to Oxidation and Iron Depletion , 2003, Journal of bacteriology.

[60]  J. Guest,et al.  Direct evidence for mRNA binding and post-transcriptional regulation by Escherichia coli aconitases. , 1999, Microbiology.

[61]  K. Tao In vivo oxidation‐reduction kinetics of OxyR, the transcriptional activator for an oxidative stress‐inducible regulon in Escherichia coli , 1999, FEBS letters.

[62]  E. Lin,et al.  Amplification of Signaling Activity of the Arc Two-component System of Escherichia coli by Anaerobic Metabolites , 1999, The Journal of Biological Chemistry.