Using a Simple Electroencephalograph for Activity Recognition of Learners

[1]  Kazuaki Murakami,et al.  Analyzing Brain Waves for Activity Recognition of Learners , 2015, ICT-EurAsia/CONFENIS.

[2]  Hong Wei,et al.  A survey of human motion analysis using depth imagery , 2013, Pattern Recognit. Lett..

[3]  H. Jasper,et al.  The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. , 1999, Electroencephalography and clinical neurophysiology. Supplement.

[4]  Bin Hu,et al.  EEG: A Way to Explore Learner's Affect in Pervasive Learning Systems , 2010, GPC.

[5]  J. Voipio,et al.  Full-band EEG (FbEEG): an emerging standard in electroencephalography , 2005, Clinical Neurophysiology.

[6]  Masafumi Hagiwara,et al.  A feeling estimation system using a simple electroencephalograph , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[7]  Claude Frasson,et al.  Exploring the Relationship between Learner EEG Mental Engagement and Affect , 2010, Intelligent Tutoring Systems.

[8]  S. Muthukumaraswamy High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations , 2013, Front. Hum. Neurosci..

[9]  Isao Miyaji,et al.  Evaluation of the Change of Work Using Simple Electroencephalography , 2013, KES.

[10]  Bao-Liang Lu,et al.  Emotional state classification from EEG data using machine learning approach , 2014, Neurocomputing.

[11]  Rosalind W. Picard,et al.  Non-contact, automated cardiac pulse measurements using video imaging and blind source separation , 2022 .

[12]  Fotis Liarokapis,et al.  Evaluation of commercial brain-computer interfaces in real and virtual world environment: A pilot study , 2014, Comput. Electr. Eng..

[13]  Kazuaki Murakami,et al.  Towards Activity Recognition of Learners in On-line Lecture , 2015, J. Mobile Multimedia.