Computational experience with a modified potential reduction algorithm for linear programming

We study the performance of a homogeneous and self-dual interior point solver for linear programming (LP) that is equipped with a continuously differentiable potential function. Our work is motivated by the apparent gap between the theoretical complexity results and long-step practical implementations in interior point algorithms. The potential function described here ensures a global linear polynomial-time convergence while providing the flexibility to integrate heuristics for generating the search directions and step length computations. Computational results on standard test problems show that LP problems are solved as efficiently (in terms of the number of iterations) as Mosek6 .

[1]  Iain S. Duff,et al.  MA47, a Fortran code for direct solution of indefinite sparse symmetric linear systems , 1995 .

[2]  Shinji Mizuno,et al.  A primal—dual infeasible-interior-point algorithm for linear programming , 1993, Math. Program..

[3]  Yinyu Ye,et al.  A simplified homogeneous and self-dual linear programming algorithm and its implementation , 1996, Ann. Oper. Res..

[4]  Robert J. Vanderbei,et al.  Symmetric Quasidefinite Matrices , 1995, SIAM J. Optim..

[5]  Shinji Mizuno,et al.  On Adaptive-Step Primal-Dual Interior-Point Algorithms for Linear Programming , 1993, Math. Oper. Res..

[6]  Katta G. Murty,et al.  Nonlinear Programming Theory and Algorithms , 2007, Technometrics.

[7]  Tamás Terlaky,et al.  Postponing the choice of the barrier parameter in Mehrotra-type predictor-corrector algorithms , 2007, Eur. J. Oper. Res..

[8]  Jacek Gondzio,et al.  Multiple centrality corrections in a primal-dual method for linear programming , 1996, Comput. Optim. Appl..

[9]  T. Terlaky,et al.  Adaptive Large-Neighborhood Self-Regular Predictor-Corrector Interior-Point Methods for Linear Optimization , 2007 .

[10]  Sanjay Mehrotra,et al.  Convergence Conditions and Krylov Subspace--Based Corrections for Primal-Dual Interior-Point Method , 2005, SIAM J. Optim..

[11]  Michael J. Todd,et al.  Potential-reduction methods in mathematical programming , 1997, Math. Program..

[12]  Knud D. Andersen,et al.  The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm , 2000 .

[13]  Yinyu Ye,et al.  An O(square-root[nL])-Iteration Homogeneous and Self-Dual Linear Programming Algorithm , 1992 .

[14]  Barry W. Peyton,et al.  Block sparse Cholesky algorithms on advanced uniprocessor computers , 1991 .

[15]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[16]  Shinji Mizuno,et al.  Infeasible-Interior-Point Primal-Dual Potential-Reduction Algorithms for Linear Programming , 1995, SIAM J. Optim..

[17]  Yurii Nesterov,et al.  Long-step strategies in interior-point primal-dual methods , 1997, Math. Program..

[18]  Reha H. Tütüncü,et al.  An infeasible-interior-point potential-reduction algorithm for linear programming , 1999, Math. Program..

[19]  Stephen J. Wright,et al.  PCx: an interior-point code for linear programming , 1999 .

[20]  Michael J. Todd,et al.  A Centered Projective Algorithm for Linear Programming , 1990, Math. Oper. Res..

[21]  Sanjay Mehrotra,et al.  Solving symmetric indefinite systems in an interior-point method for linear programming , 1993, Math. Program..

[22]  Kunio Tanabe,et al.  Centered newton method for mathematical programming , 1988 .

[23]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[24]  Yinyu Ye,et al.  An O(n3L) potential reduction algorithm for linear programming , 1991, Math. Program..

[25]  Shinji Mizuno,et al.  An O(√nL)-Iteration Homogeneous and Self-Dual Linear Programming Algorithm , 1994, Math. Oper. Res..

[26]  R. Vanderbei Symmetric Quasi-Definite Matrices , 2006 .

[27]  Shinji Mizuno,et al.  An $$O(\sqrt n L)$$ iteration potential reduction algorithm for linear complementarity problems , 1991, Math. Program..

[28]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[29]  J. Bunch,et al.  Direct Methods for Solving Symmetric Indefinite Systems of Linear Equations , 1971 .