Extensive Halogen Scrambling and Buttressing Effects Encountered upon Treatment of Oligobromoarenes with Bases

As a rule, tri-, tetra- and pentahaloarenes readily undergo ortho-lithiation when treated with amide-type bases. However, halogen migration occurs whenever the substrate contains three or more contiguous halogen atoms, provided that at least one of them is bromine or iodine. Dismutation and redn. processes often take place concomitantly. In this manner, a variety of organometallic intermediates may be formed, the driving force always being a decrease in basicity. When no such energy gain can be achieved, a sterically crowded substrate may just turn out to be inert, this was found to be the case with 1,5-dibromo-3-fluoro-2-(trimethylsilyl)benzene, 1,5-dibromo-3-fluoro-2,4-bis(trimethylsilyl)benzene, and 1,5-dibromo-3-fluoro-2,4-diiodobenzene. Buttressing effects are apparently strong enough to prevent expedient deprotonation of those substrates. [on SciFinder (R)]

[1]  Faigl,et al.  Enhancement of Benzylic basicity by a fluorine substituent at the para- position: a case of lone pair/lone pair repulsion , 2000, Chemistry.

[2]  M. Schlosser,et al.  The simultaneous in-situ generation of aldehydes and phosphorus ylides. A convenient multi-step one-pot olefination protocol , 1999 .

[3]  M. Schlosser,et al.  Halogen shuffling in pyridines: Site selective electrophilic substitutions of 2-chloro-6-(trifluoromethyl)pyridine , 1998 .

[4]  M. Schlosser,et al.  1,2,4-TRIS(TRIFLUOROMETHYL)BENZENE : SELECTIVE LITHIATION AND SUBSEQUENT ELECTROPHILIC SUBSTITUTION , 1998 .

[5]  M. Schlosser,et al.  Additivity of substituent effects in the fluoroarene series: equilibrium acidity in the gas phase and deprotonation rates in ethereal solution , 1997 .

[6]  M. Schlosser,et al.  THE ACIDIFYING EFFECTS OF CHLORINE AND BROMINE : LITTLE DIFFERENCE , 1997 .

[7]  F. Scheuermeyer,et al.  Metalation of Nitroaromatics with in Situ Electrophiles. , 1997, The Journal of organic chemistry.

[8]  M. Schlosser,et al.  Regioselective ortho-lithiation of chloro and bromo substituted fluoroarenes , 1996 .

[9]  M. Schlosser,et al.  Reagent-modulated optional site selectivities: the metalation of o-, m- and p-halobenzotrifluorides , 1996 .

[10]  Stefan Fröhlich Needed: A Framework for European Security , 2012 .

[11]  J. C. Chabala,et al.  Benzylated 1,2,3-triazoles as anticoccidiostats. , 1991, Journal of medicinal chemistry.

[12]  V. Snieckus,et al.  Directed Metalation of Pi-Deficient Azaaromatics: Strategies of Functionalization of Pyridines, Quinolines, and Diazines , 1991 .

[13]  M. Platz,et al.  Descriptive photochemistry of polyfluorinated azide derivatives of methyl benzoate , 1990 .

[14]  C. Margot,et al.  1,2-elimination of alcohol from homoallyl ethers under the influence of mixed metal bases , 1990 .

[15]  C. Margot,et al.  Facile isomerization of oxiranes to allyl alcohols by mixed metal bases , 1990 .

[16]  C. Margot,et al.  Mixed metal bases as promoters of 1,4-eliminations , 1990 .

[17]  J. Prieto,et al.  The Regioselectivity of Deprotonation of Unsymmetrical Ketones with Lithium Tert-Butyltrialkylsilyl Amides , 1988 .

[18]  M. Newcomb,et al.  Origin of benzophenone ketyl in reactions of benzophenone with lithium dialkylamides. Implications for other possible electron-transfer reactions , 1984 .

[19]  G. Deacon,et al.  Organothallium compounds. XVIII. The effect of antimony pentafluoride and fluorosulfuric acid on the thallation of polyfluoroarenes , 1982 .

[20]  L. Paquette,et al.  Bond fixation in annulenes. 10. Utilization of buttressing effects for comparing ring inversion and .pi. bond shifting transition state geometries in cyclooctatetraenes , 1980 .

[21]  L. T. Scott,et al.  Reduction of a ketone by lithium diisopropyl amide evidence for an electron-transfer mechanism , 1978 .

[22]  G. Deacon,et al.  Synthesis of perbromobenzoic acids and perbromobenzenes from aromatic carboxylic acids by permercuration and bromodemercuration , 1977 .

[23]  J. Bunnett Base-catalyzed halogen dance, and other reactions of aryl halides , 1972 .

[24]  C. Tamborski,et al.  Improved synthesis of pentabromophenylmagnesium bromide and 1,2,4,5-tetrabromophenylbis(magnesium bromide) , 1971 .

[25]  R. Waack,et al.  Dependence of the kinetic isotope effect on the structure of the organolithium metalating reagent in the metalation of triphenylmethane , 1969 .

[26]  W. Gottardi Über Bromierungen mit Dibromoisocyanursäure unter ionischen Bedingungen, 2. Mitt.: Perbromierungen , 1969 .

[27]  G. Wittig,et al.  Über N‐metallierte sek. Amine als Hydrid‐Donatoren , 1964 .

[28]  H. Schmidt,et al.  Über Lithium-diäthylamid als Hydrid-Donator , 1962 .

[29]  J. Sauer,et al.  Nucleophile aromatische Substitutionen über Arine , 1960 .

[30]  W. Theilacker,et al.  Beiträge zur Biphenylisomerie, I. Spaltung des Naphthidins und des 2.3.2′.3′-Tetramethyl-benzidins in optische Antipoden† , 1959 .

[31]  F. Westheimer,et al.  The Calculation and Determination of the Buttressing Effect for the Racemization of 2,2',3,3'-Tetraiodo-5,5'-dicarboxybiphenyl , 1950 .

[32]  G. B. Kistiakowsky,et al.  The Kinetics of Racemization of 2,2'-Diamino-6,6'-dimethyldiphenyl , 1936 .

[33]  G. Lock Über die Abspaltung der Aldehydgruppe als Ameisensäure aus aromatischen Aldehyden, III. Mitteil.: Gemischt-halogen-haltige und Halogen-nitro-benzaldehyde , 1935 .

[34]  F. Asinger Über die Verseifung substituierter Benzanilide , 1935 .

[35]  W. E. Hanford,et al.  Stereochemistry of Diphenyls. XXXV.1 The Effect of 3' Substituents on the Rate of Racemization of 2-Nitro-6-carboxy-2'-methoxydiphenyl , 1934 .

[36]  R. Adams,et al.  The Stereochemistry of Diphenyls and Analogous Compounds. , 1933 .

[37]  J. J. Sudborough LXIV.—Diortho-substituted benzoic acids. I. Substituted benzoyl chlorides , 1895 .