Fungal symbionts may modulate nitrate inhibitory effect on orchid seed germination

[1]  O. Paladino,et al.  Assessment of Nitrate Hazards in Umbria Region (Italy) Using Field Datasets: Good Agriculture Practices and Farms Sustainability , 2020, Sustainability.

[2]  M. Vohník Ericoid mycorrhizal symbiosis: theoretical background and methods for its comprehensive investigation , 2020, Mycorrhiza.

[3]  J. Jersáková,et al.  Altered rhizoctonia assemblages in grasslands on ex-arable land support germination of mycorrhizal generalist, not specialist orchids. , 2020, The New phytologist.

[4]  M. Selosse,et al.  In vitro axenic germination and cultivation of mixotrophic Pyroloideae (Ericaceae) and their post-germination ontogenetic development , 2018, Annals of botany.

[5]  M. Weiser,et al.  Orchid seed sensitivity to nitrate reflects habitat preferences and soil nitrate content. , 2019, Plant biology.

[6]  D. Whigham,et al.  Mycorrhizal fungi affect orchid distribution and population dynamics. , 2018, The New phytologist.

[7]  E. Nambara,et al.  Regulation of seed dormancy and germination by nitrate , 2018, Seed Science Research.

[8]  M. Hejcman,et al.  Does seed modification and nitrogen addition affect seed germination of Pulsatilla grandis? , 2017 .

[9]  K. Dixon,et al.  Conservation Methods for Terrestrial Orchids , 2017 .

[10]  H. Lipavská,et al.  Utilization of exogenous saccharides by protocorms of two terrestrial orchids , 2017 .

[11]  E. Lindquist,et al.  Fungal and plant gene expression in the Tulasnella calospora-Serapias vomeracea symbiosis provides clues about nitrogen pathways in orchid mycorrhizas. , 2017, The New phytologist.

[12]  D. Tyteca,et al.  Habitat-driven variation in mycorrhizal communities in the terrestrial orchid genus Dactylorhiza , 2016, Scientific Reports.

[13]  J. Armesto,et al.  Relationship between soil nutrients and mycorrhizal associations of two Bipinnula species (Orchidaceae) from central Chile. , 2016, Annals of botany.

[14]  V. Stevanović,et al.  Factors affecting the distribution and abundance of orchids in grasslands and herbaceous wetlands , 2016 .

[15]  G. Pellegrino,et al.  Relationships between orchid and fungal biodiversity: Mycorrhizal preferences in Mediterranean orchids , 2016 .

[16]  K. Dixon,et al.  Germination and seedling establishment in orchids: a complex of requirements. , 2015, Annals of botany.

[17]  M. V. D. van der Heijden,et al.  Mycorrhizal ecology and evolution : the past , the present , and the future , 2015 .

[18]  M. Chase,et al.  An updated classification of Orchidaceae , 2015 .

[19]  C. Murat,et al.  Gene expression in mycorrhizal orchid protocorms suggests a friendly plant–fungus relationship , 2014, Planta.

[20]  M. Selosse The latest news from biological interactions in orchids: in love, head to toe. , 2014, The New phytologist.

[21]  A. Soukup,et al.  Essential methods of plant sample preparation for light microscopy. , 2014, Methods in molecular biology.

[22]  J. Jersáková,et al.  Asymbiotic germination of mature seeds and protocorm development of Pseudorchis albida (Orchidaceae) are inhibited by nitrates even at extremely low concentrations , 2013 .

[23]  H. Lambers,et al.  Variation in nutrient-acquisition patterns by mycorrhizal fungi of rare and common orchids explains diversification in a global biodiversity hotspot. , 2013, Annals of botany.

[24]  H. Jacquemyn,et al.  Variation in Mycorrhizal Associations with Tulasnelloid Fungi among Populations of Five Dactylorhiza Species , 2012, PloS one.

[25]  Stanislav Vosolsobě,et al.  European orchid cultivation – from seed to mature plant , 2012 .

[26]  J. Amador,et al.  Nitrate and Phosphate Leaching under Turfgrass Fertilized with a Squid-based Organic Fertilizer , 2012, Water, Air, & Soil Pollution.

[27]  H. Marschner,et al.  Marschner's Mineral Nutrition of Higher Plants , 2011 .

[28]  J. Combs,et al.  The Effects of Above- and Belowground Mutualisms on Orchid Speciation and Coexistence , 2011, The American Naturalist.

[29]  H. Pritchard,et al.  Nutritional requirements for in vitro seed germination of 12 terrestrial, lithophytic and epiphytic orchids. , 2011 .

[30]  J. M. Reichert,et al.  Nitrate and ammonium in soil solution in tobacco management systems , 2010 .

[31]  E. Sgarbi,et al.  In vitro asymbiotic germination and seedling development of Limodorum abortivum (Orchidaceae) , 2009 .

[32]  J. Moreno,et al.  Light and nitrate effects on seed germination of Mediterranean plant species of several functional groups , 2009, Plant Ecology.

[33]  M. Kane,et al.  Techniques and Applications of In Vitro Orchid Seed Germination , 2008 .

[34]  B. M. Petersen,et al.  A model simulation analysis of soil nitrate concentrations—Does soil organic matter pool structure or catch crop growth parameters matter most? , 2007 .

[35]  M. Kane,et al.  In vitro seed culture and seedling development of Calopogon tuberosus , 2006, Plant Cell, Tissue and Organ Culture.

[36]  H. Truong,et al.  Nitrate, a signal relieving seed dormancy in Arabidopsis. , 2005, Plant, cell & environment.

[37]  M. Fay In what situations isin vitro culture appropriate to plant conservations? , 1994, Biodiversity & Conservation.

[38]  A. Urban,et al.  Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. , 2004, Mycological research.

[39]  R. Azcón,et al.  Effects of ammonium and nitrate on the growth of vesicular-arbuscular mycorrhizalErythrina poeppigiana O.I. Cook seedlings , 1994, Biology and Fertility of Soils.

[40]  J. Lundberg,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants : APG II THE ANGIOSPERM PHYLOGENY GROUP * , 2003 .

[41]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[42]  D. Read,et al.  Mycorrhizal Specificity and Function in Myco-heterotrophic Plants , 2002 .

[43]  R. Azcón,et al.  Differential contribution of arbuscular mycorrhizal fungi to plant nitrate uptake (15N) under increasing N supply to the soil , 2001 .

[44]  H. Stryhn,et al.  Nitrate concentrations in soil solutions below Danish forests , 1999 .

[45]  Nelly Eck,et al.  AXENIC IN-VITRO NITROGEN AND PHOSPHORUS RESPONSES OF SOME DUTCH MARSH ORCHIDS , 1995 .

[46]  Nelly Eck,et al.  AMMONIUM TOXICITY AND NITRATE RESPONSE OF AXENICALLY GROWN DACTYLORHIZA-INCARNATA SEEDLINGS , 1995 .

[47]  Nelly Eck,et al.  EFFECTS OF MYCORRHIZAL FUNGI ON IN-VITRO NITROGEN RESPONSE OF SOME DUTCH INDIGENOUS ORCHID SPECIES , 1995 .

[48]  S. Smith,et al.  Colonization of Orchis morio protocorms by a mycorrhizal fungus: effects of nitrogen nutrition and glyphosate in modifying the responses , 1995 .

[49]  M. Bartlett Properties of Sufficiency and Statistical Tests , 1992 .

[50]  F. Penningsfeld,et al.  The role of nitrogen concentration in determining the outcome of the interaction between Dactylorhiza incarnata (L.) Soó and Rhizoctonia sp. , 1991 .

[51]  H. Rasmussen Cell differentiation and mycorrhizal infection in Dactylorhiza majalis (Rchb. f.) Hunt & Summerh. (Orchidaceae) during germination in vitro , 1990 .

[52]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .

[53]  J. Manning,et al.  The Development and Mobilisation of Seed Reserves in Some African Orchids , 1987 .

[54]  P. Debergh,et al.  In vitro germination of some Western European orchids , 1986 .

[55]  G. Hadley,et al.  NUTRITIONAL REQUIREMENTS OF ORCHID ENDOPHYTES , 1978 .

[56]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[57]  Clyde Young Kramer,et al.  Extension of multiple range tests to group means with unequal numbers of replications , 1956 .

[58]  Cook seedlings Effects of ammonium and nitrate on the growth of vesicular . arbuscular mycorrhizal Erythrina poeppigiana 0 . 1 . , 2022 .