Reconstructing the dietary habits and trophic positions of the Longipterygidae (Aves: Enantiornithes) using neontological and comparative morphological methods

The Longipterygidae are a unique clade among the enantiornithines in that they exhibit elongate rostra (≥60% total skull length) with dentition restricted to the distal tip of the rostrum, and pedal morphologies suited for an arboreal lifestyle (as in other enantiornithines). This suite of features has made interpretations of this group’s diet and ecology difficult to determine due to the lack of analogous taxa that exhibit similar morphologies together. Many extant bird groups exhibit rostral elongation, which is associated with several disparate ecologies and diets (e.g., aerial insectivory, piscivory, terrestrial carnivory). Thus, the presence of rostral elongation in the Longipterygidae only somewhat refines trophic predictions of this clade. Anatomical morphologies do not function singularly but as part of a whole and thus, any dietary or ecological hypothesis regarding this clade must also consider other features such as their unique dentition. The only extant group of dentulous volant tetrapods are the chiropterans, in which tooth morphology and enamel thickness vary depending upon food preference. Drawing inferences from both avian bill proportions and variations in the dental morphology of extinct and extant taxa, we provide quantitative data to support the hypothesis that the Longipterygidae were animalivorous, with greater support for insectivory.

[1]  D. Hone,et al.  Evolutionary pressures of aerial insectivory reflected in anurognathid pterosaurs , 2022, Journal of anatomy.

[2]  R. Benson,et al.  Environmental signal in the evolutionary diversification of bird skeletons , 2022, Nature.

[3]  H. Larsson,et al.  Generalist Diet of Microraptor zhaoianus Included Mammals , 2022, Journal of Vertebrate Paleontology.

[4]  Zhonghe Zhou,et al.  Insight into the evolutionary assemblage of cranial kinesis from a Cretaceous bird , 2022, bioRxiv.

[5]  J. A. Bright,et al.  Diet of Mesozoic toothed birds (Longipterygidae) inferred from quantitative analysis of extant avian diet proxies , 2022, BMC biology.

[6]  Laura E. Wilson,et al.  Forty new specimens of Ichthyornis provide unprecedented insight into the postcranial morphology of crownward stem group birds , 2022, bioRxiv.

[7]  Eva C. Herbst,et al.  Modeling tooth enamel in FEA comparisons of skulls: Comparing common simplifications with biologically realistic models , 2021, iScience.

[8]  Xiaoting Zheng,et al.  An Early Cretaceous enantiornithine bird with a pintail , 2021, Current Biology.

[9]  J. O’Connor,et al.  The evolutionary and functional implications of the unusual quadrate of Longipteryx chaoyangensis (Avialae: Enantiornithes) from the Cretaceous Jehol Biota of China , 2021, Journal of anatomy.

[10]  J. O’Connor,et al.  Exploring the Ecomorphology of Two Cretaceous Enantiornithines With Unique Pedal Morphology , 2021, Frontiers in Ecology and Evolution.

[11]  A. Bjarnason,et al.  A 3D geometric morphometric dataset quantifying skeletal variation in birds , 2021, MorphoMuseuM.

[12]  Zhonghe Zhou,et al.  Evolution of tooth crown shape in Mesozoic birds, and its adaptive significance with respect to diet , 2021 .

[13]  Ian J. Corfe,et al.  Multiple evolutionary origins and losses of tooth complexity in squamates , 2020, Nature Communications.

[14]  A. Turner,et al.  Late Cretaceous bird from Madagascar reveals unique development of beaks , 2020, Nature.

[15]  M. Purnell,et al.  Dietary diversity and evolution of the earliest flying vertebrates revealed by dental microwear texture analysis , 2020, Nature Communications.

[16]  A. Pritchard,et al.  Using Manual Ungual Morphology to Predict Substrate Use in the Drepanosauromorpha and the Description of a New Species , 2020, Journal of Vertebrate Paleontology.

[17]  J. Lamsdell,et al.  Principal component analysis of avian hind limb and foot morphometrics and the relationship between ecology and phylogeny , 2020, Paleobiology.

[18]  A. Abourachid,et al.  The skin of birds' feet: Morphological adaptations of the plantar surface , 2020, Journal of morphology.

[19]  E. Huang,et al.  Ultramicrostructural reductions in teeth: implications for dietary transition from non-avian dinosaurs to birds , 2020, BMC Evolutionary Biology.

[20]  David W. Winkler,et al.  Jacamars (Galbulidae) , 2020, Birds of the World.

[21]  I. Lovette,et al.  Sandpipers and Allies (Scolopacidae) , 2020 .

[22]  I. Lovette,et al.  New World and African Parrots (Psittacidae) , 2020 .

[23]  I. Lovette,et al.  Treecreepers (Certhiidae) , 2020, Birds of the World.

[24]  C. Sheard,et al.  Macroevolutionary convergence connects morphological form to ecological function in birds , 2020, Nature Ecology & Evolution.

[25]  W. Jetz,et al.  Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation , 2019, PLoS biology.

[26]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[27]  Zhonghe Zhou,et al.  The evolution of the modern avian digestive system: insights from paravian fossils from the Yanliao and Jehol biotas , 2019, Palaeontology.

[28]  C. Holliday,et al.  The significance of enamel thickness in the teeth of Alligator mississippiensis and its diversity among crocodyliforms , 2019, Journal of Zoology.

[29]  L. T. Nash,et al.  A Novel Method for Assessing Enamel Thickness Distribution in the Anterior Dentition as a Signal for Gouging and Other Extractive Foraging Behaviors in Gummivorous Mammals , 2019, Folia Primatologica.

[30]  P. Mcdonald,et al.  Evolution of the vomer and its implications for cranial kinesis in Paraves , 2019, Proceedings of the National Academy of Sciences.

[31]  Chan-Gyu Yun Comments on the taxonomic validity of Camptodontornis yangi (Li, Gong, Zhang, Yang, and Hou, 2010) and its relationships to Longipteryx chaoyangensis Zhang, Zhou, Hou, and Gu, 2000 and Boluochia zhengi Zhou, 1995. , 2019, Zootaxa.

[32]  Xiaoting Zheng,et al.  Microraptor with Ingested Lizard Suggests Non-specialized Digestive Function , 2019, Current Biology.

[33]  P. Falkingham,et al.  Repeated evolution of drag reduction at the air–water interface in diving kingfishers , 2019, Journal of the Royal Society Interface.

[34]  Christian Drosten,et al.  A metaanalysis of bat phylogenetics and positive selection based on genomes and transcriptomes from 18 species , 2019, Proceedings of the National Academy of Sciences.

[35]  E. Rayfield,et al.  The multifactorial nature of beak and skull shape evolution in parrots and cockatoos (Psittaciformes) , 2019, BMC Evolutionary Biology.

[36]  E. Rayfield,et al.  The evolutionary relationship among beak shape, mechanical advantage, and feeding ecology in modern birds * , 2018, Evolution; international journal of organic evolution.

[37]  J. O’Connor,et al.  The trophic habits of early birds , 2019, Palaeogeography, Palaeoclimatology, Palaeoecology.

[38]  L. Chiappe,et al.  Morphometric comparison of the Hesperornithiformes and modern diving birds , 2019, Palaeogeography, Palaeoclimatology, Palaeoecology.

[39]  Shawn M. Billerman,et al.  Kingfishers (Alcedinidae) , 2018, Birds of the World.

[40]  Xiaoting Zheng,et al.  Exceptional dinosaur fossils reveal early origin of avian-style digestion , 2018, Scientific Reports.

[41]  V. Buffrénil,et al.  Bony pseudoteeth of extinct pelagic birds (Aves, Odontopterygiformes) formed through a response of bone cells to tooth-specific epithelial signals under unique conditions , 2018, Scientific Reports.

[42]  P. Mcdonald,et al.  A comparative study of avian pes morphotypes, and the functional implications of Australian raptor pedal flexibility , 2018, Emu - Austral Ornithology.

[43]  M. Purnell,et al.  Pterosaur dietary hypotheses: a review of ideas and approaches , 2018, Biological reviews of the Cambridge Philosophical Society.

[44]  P. Currie,et al.  Puncture-and-Pull Biomechanics in the Teeth of Predatory Coelurosaurian Dinosaurs , 2018, Current Biology.

[45]  Laura E. Wilson,et al.  Complete Ichthyornis skull illuminates mosaic assembly of the avian head , 2018, Nature.

[46]  L. Chiappe,et al.  Aerodynamic modelling of a Cretaceous bird reveals thermal soaring capabilities during early avian evolution , 2017, Journal of The Royal Society Interface.

[47]  Y. Wang,et al.  Vertebrate assemblages of the Jurassic Yanliao Biota and the Early Cretaceous Jehol Biota: Comparisons and implications , 2017 .

[48]  A. Abourachid,et al.  Foot shape in arboreal birds: two morphological patterns for the same pincer‐like tool , 2017, Journal of anatomy.

[49]  K. Beard,et al.  Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status , 2016 .

[50]  P. Tafforeau,et al.  Synchrotron imaging of dentition provides insights into the biology of Hesperornis and Ichthyornis, the “last” toothed birds , 2016, BMC Evolutionary Biology.

[51]  J. A. Nyakatura,et al.  Morphology and motion: hindlimb proportions and swing phase kinematics in terrestrially locomoting charadriiform birds , 2016, Journal of Experimental Biology.

[52]  E. Rayfield,et al.  The shapes of bird beaks are highly controlled by nondietary factors , 2016, Proceedings of the National Academy of Sciences.

[53]  L. Chiappe,et al.  A species-level phylogeny of the Cretaceous Hesperornithiformes (Aves: Ornithuromorpha): implications for body size evolution amongst the earliest diving birds , 2016 .

[54]  D. Adams,et al.  geomorph: Software for geometric morphometric analyses , 2016 .

[55]  Christophe Hendrickx,et al.  A Proposed Terminology of Theropod Teeth (Dinosauria, Saurischia) , 2015 .

[56]  D. Wartzok Handbook of Mammals of the World , 2015 .

[57]  J. Botelho,et al.  Altriciality and the Evolution of Toe Orientation in Birds , 2015, Evolutionary Biology.

[58]  Michelle R. Quayle,et al.  The Relationship between Cranial Structure, Biomechanical Performance and Ecological Diversity in Varanoid Lizards , 2015, PloS one.

[59]  Xuri Wang,et al.  New material of Longipteryx (Aves: Enantiornithes) from the Lower Cretaceous Yixian Formation of China with the first recognized avian tooth crenulations. , 2015, Zootaxa.

[60]  A. Dollar,et al.  Mechanical analysis of avian feet: multiarticular muscles in grasping and perching , 2015, Royal Society Open Science.

[61]  Paul J. Constantino,et al.  Sea otter dental enamel is highly resistant to chipping due to its microstructure , 2014, Biology Letters.

[62]  J. Botelho,et al.  The developmental origin of zygodactyl feet and its possible loss in the evolution of Passeriformes , 2014, Proceedings of the Royal Society B: Biological Sciences.

[63]  P. Upchurch,et al.  Rates of Dinosaur Body Mass Evolution Indicate 170 Million Years of Sustained Ecological Innovation on the Avian Stem Lineage , 2014, PLoS biology.

[64]  Xiaoting Zheng,et al.  New Specimens of Yanornis Indicate a Piscivorous Diet and Modern Alimentary Canal , 2014, PloS one.

[65]  Zhou Zhonghe(周忠和),et al.  A new diverse enantiornithine family (Bohaiornithidae fam. nov.) from the Lower Cretaceous of China with information from two new species , 2014 .

[66]  E. Stupka,et al.  Phylogenomic Analyses Elucidate the Evolutionary Relationships of Bats , 2013, Current Biology.

[67]  C. Pinheiro,et al.  Diet and foraging behavior of the rufous-tailed jacamar (Galbula ruficauda, Galbulidae) in central Brazil , 2013 .

[68]  L. Xing,et al.  PISCIVORY IN THE FEATHERED DINOSAUR MICRORAPTOR , 2013, Evolution; international journal of organic evolution.

[69]  Ji Qiang,et al.  Xinghaiornis lini (Aves: Ornithothoraces) from the Early Cretaceous of Liaoning: An Example of Evolutionary Mosaic in Early Birds , 2013 .

[70]  Emmanuelle Pouydebat,et al.  Getting a grip on tetrapod grasping: form, function, and evolution , 2013, Biological reviews of the Cambridge Philosophical Society.

[71]  James D. Pampush,et al.  Homoplasy and thick enamel in primates. , 2013, Journal of human evolution.

[72]  W. Jetz,et al.  The global diversity of birds in space and time , 2012, Nature.

[73]  Z. Xi,et al.  A New Enantiornithine Bird from the Lower Cretaceous Jiufotang Formation in Jinzhou Area, Western Liaoning Province, China , 2012 .

[74]  Liam J. Revell,et al.  phytools: an R package for phylogenetic comparative biology (and other things) , 2012 .

[75]  Z. Zhong MASS ESTIMATE AND EVOLUTIONARY TREND IN CHINESE MESOZOIC FOSSIL BIRDS , 2012 .

[76]  Gregg F. Gunnell,et al.  Evolutionary History of Bats: Fossils, Molecules and Morphology , 2012 .

[77]  Sharlene E. Santana,et al.  Morphological innovation, diversification and invasion of a new adaptive zone , 2012, Proceedings of the Royal Society B: Biological Sciences.

[78]  Zhonghe Zhou,et al.  Additional specimen of Microraptor provides unique evidence of dinosaurs preying on birds , 2011, Proceedings of the National Academy of Sciences.

[79]  T. Dececchi,et al.  Assessing Arboreal Adaptations of Bird Antecedents: Testing the Ecological Setting of the Origin of the Avian Flight Stroke , 2011, PloS one.

[80]  A. Ősi Feeding-related characters in basal pterosaurs: Implications for jaw mechanism, dental function and diet , 2011 .

[81]  Zhonghe Zhou,et al.  A reappraisal of Boluochia zhengi (Aves: Enantiornithes) and a discussion of intraclade diversity in the Jehol avifauna, China , 2011 .

[82]  Sunny H. Hwang The evolution of dinosaur tooth enamel microstructure , 2011, Biological reviews of the Cambridge Philosophical Society.

[83]  J. O’Connor,et al.  A revision of enantiornithine (Aves: Ornithothoraces) skull morphology , 2011 .

[84]  Klaus Peter Schliep,et al.  phangorn: phylogenetic analysis in R , 2010, Bioinform..

[85]  Y. Wang,et al.  Vertebrate diversity of the Jehol Biota as compared with other lagerstätten , 2010 .

[86]  D. Ren,et al.  New Fossil Elaterids (Coleoptera: Polyphaga: Elateridae) from the Jehol Biota in China , 2010 .

[87]  J. Nel Handbook of the Mammals of the World , 2010 .

[88]  D. Ren,et al.  A new fossil genus of Mesochrysopidae (Neuroptera) from the Early Cretaceous Yixian Formation of China , 2010 .

[89]  D. Clayton,et al.  How Birds Combat Ectoparasites , 2010 .

[90]  Y. Wang,et al.  A new lizard (Reptilia: Squamata) with exquisite preservation of soft tissue from the Lower Cretaceous of Inner Mongolia, China , 2010 .

[91]  Li Li A NEW ENANTIORNITHINE BIRD(AVES) FROM THE EARLY CRETACEOUS OF LIAONING,CHINA , 2010 .

[92]  W. Peters,et al.  Life history, sexual dimorphism and ‘ornamental’ feathers in the mesozoic bird Confuciusornis sanctus , 2009, Biology Letters.

[93]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[94]  Xing Xu,et al.  A pre-Archaeopteryx troodontid theropod from China with long feathers on the metatarsus , 2009, Nature.

[95]  G. Slater,et al.  Implications of predatory specialization for cranial form and function in canids , 2009 .

[96]  D. Varricchio,et al.  Anatomy of the Early Cretaceous Bird Rapaxavis Pani, A New Species From Liaoning Province, China , 2009 .

[97]  Qingjin Meng,et al.  Phylogenetic Support for a Specialized Clade of Cretaceous Enantiornithine Birds with Information from a New Species , 2009 .

[98]  A. Brusaferro,et al.  Morphometric analysis of the kingfisher cranium (AVES) , 2009 .

[99]  Robin N. M. Feeney,et al.  Three-dimensional molar enamel distribution and thickness in Australopithecus and Paranthropus , 2008, Biology Letters.

[100]  Paul J. Constantino,et al.  Dental enamel as a dietary indicator in mammals. , 2008, BioEssays : news and reviews in molecular, cellular and developmental biology.

[101]  Larry D. Martin,et al.  Mandibular kinesis in Hesperornis , 2008 .

[102]  D. Ren,et al.  New genus and species of Hexagenitidae (Insecta: Ephemeroptera) from Yixian Formation, China , 2007 .

[103]  J. Masero,et al.  The use of distal rhynchokinesis by birds feeding in water , 2007, Journal of Experimental Biology.

[104]  Patricia W. Freeman,et al.  Using scissors to quantify hardness of insects: Do bats select for size or hardness? , 2007 .

[105]  A. Herrel,et al.  Ecological consequences of ontogenetic changes in head shape and bite performance in the Jamaican lizard Anolis lineatopus , 2006 .

[106]  M. Jin,et al.  The mammal fauna in the Early Cretaceous Jehol Biota: implications for diversity and biology of Mesozoic mammals , 2006 .

[107]  A. Manegold Two Additional Synapomorphies of Grebes Podicipedidae and Flamingos Phoenicopteridae , 2006 .

[108]  Zhang Yu-guang Morphology of Distal Tarsometatarsus and Perching Habits in Birds , 2006 .

[109]  A. Evans,et al.  Correspondence between tooth shape and dietary biomechanical properties in insectivorous microchiropterans , 2005 .

[110]  S. O’Brien,et al.  A Molecular Phylogeny for Bats Illuminates Biogeography and the Fossil Record , 2005, Science.

[111]  S. Steppan,et al.  Evolution of hypercarnivory: the effect of specialization on morphological and taxonomic diversity , 2004, Paleobiology.

[112]  D. Steadman Mesozoic Birds: Above the Heads of Dinosaurs , 2003 .

[113]  J. Marugán-Lobón,et al.  Disparity and geometry of the skull in Archosauria (Reptilia: Diapsida) , 2003 .

[114]  J. Rensberger ENAMEL MICROSTRUCTURAL SPECIALIZATION IN THE CANINE OF THE SPOTTED HYENA , CROCUTA CROCUTA , 2003 .

[115]  C. Chuong,et al.  New Early Cretaceous fossil from China documents a novel trophic specialization for Mesozoic birds , 2003, Naturwissenschaften.

[116]  Zhonghe Zhou,et al.  Archaeoraptor's better half , 2002, Nature.

[117]  Zhe‐Xi Luo,et al.  The earliest known eutherian mammal , 2002, Nature.

[118]  Jim Reynolds,et al.  Handbook of the Birds of the World, Vol. 6. Mousebirds to Hornbills , 2002 .

[119]  K. Middleton The morphological basis of hallucal orientation in extant birds , 2001, Journal of morphology.

[120]  Zhonghe Zhou,et al.  Two new ornithurine birds from the Early Cretaceous of western Liaoning, China , 2001 .

[121]  Zhonghe Zhou,et al.  Early diversification of birds: Evidence from a new opposite bird , 2001 .

[122]  Junfeng Zhang The discovery of aeschnidiid nymphs (Aeschnidiidae, Odonata, Insecta) , 2000 .

[123]  Rae V. Anderson Handbook of the Birds of the World , 1999 .

[124]  A. Chinsamy,et al.  Bone microstructure of the divingHesperornisand the voltantIchthyornisfrom the Niobrara Chalk of western Kansas , 1998 .

[125]  Patricia W. Freeman Form, Function, and Evolution in Skulls and Teeth of Bats , 1998 .

[126]  E. Barratt,et al.  Can skull morphology be used to predict ecological relationships between bat species? A test using two cryptic species of pipistrelle , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[127]  L. López-Jurado,et al.  Dental Ontogeny in Lacerta lepida (Sauria, Lacertidae) and Its Relationship to Diet , 1997 .

[128]  Patricia W. Freeman,et al.  Puncturing Ability of Bat Canine Teeth: The Tip , 1997 .

[129]  J. Sanz,et al.  An Early Cretaceous bird from Spain and its implications for the evolution of avian flight , 1996, Nature.

[130]  E. Dumont Enamel Thickness and Dietary Adaptation among Extant Primates and Chiropterans , 1995 .

[131]  L. Best,et al.  Grit use by house sparrows: effects of diet and grit size , 1995 .

[132]  Q. Lin Cretaceous insects of China , 1994 .

[133]  D. Clayton,et al.  Relationship of bill morphology to grooming behaviour in birds , 1994, Animal Behaviour.

[134]  Suzanne G. Strait,et al.  Molar morphology and food texture among small-bodied insectivorous mammals , 1993 .

[135]  Patricia W. Freeman Canine teeth of bats (Microchiroptera): size, shape and role in crack propagation , 1992 .

[136]  Patricia W. Freeman Frugivorous and animalivorous bats (Microchiroptera): dental and cranial adaptations , 1988 .

[137]  B. Valkenburgh INCIDENCE OF TOOTH BREAKAGE AMONG LARGE, PREDATORY MAMMALS , 1988 .

[138]  Patricia W. Freeman Functional cranial analysis of large animalivorous bats (Microchiroptera) , 1984 .

[139]  R. Zusi A functional and evolutionary analysis of Rhynchokinesis in birds , 1984 .

[140]  H. Fitch Sexual size differences in reptiles / by Henry S. Fitch. , 1981 .

[141]  H. Fitch Sexual size differences in reptiles , 1981 .

[142]  J. Bradbury,et al.  Observations on the Foraging Behavior and Avian Prey of the Neotropical Carnivorous Bat, Vampyrum spectrum , 1977 .

[143]  R. Lederer Bill Size, Food Size, and Jaw Forces of Insectivorous Birds , 1975 .

[144]  P. D. Gingerich Skull of Hesperornis and Early Evolution of Birds , 1973, Nature.

[145]  F. H. Herrick Birds of the World , 1909 .