Interleukin-7 receptor α mutational activation can initiate precursor B-cell acute lymphoblastic leukemia

[1]  V. Costa,et al.  The Multifaceted Role of Annexin A1 in Viral Infections , 2023, Cells.

[2]  H. D. Liggitt,et al.  Activated interleukin-7 receptor signaling drives B-cell acute lymphoblastic leukemia in mice , 2021, Leukemia.

[3]  S. Demeyer,et al.  Overexpression of wild-type IL-7Rα promotes T-cell acute lymphoblastic leukemia/lymphoma , 2021, Blood.

[4]  G. Armstrong,et al.  Life Expectancy of Adult Survivors of Childhood Cancer Over 3 Decades. , 2020, JAMA oncology.

[5]  M. Toribio,et al.  IL-7R is essential for leukemia-initiating cell activity and pathogenesis of T-cell acute lymphoblastic leukemia. , 2019, Blood.

[6]  J. Barata,et al.  Flip the coin: IL-7 and IL-7R in health and disease , 2019, Nature Immunology.

[7]  S. Pyne,et al.  Topographical Mapping of Isoform-Selectivity Determinants for J-Channel-Binding Inhibitors of Sphingosine Kinases 1 and 2. , 2019, Journal of medicinal chemistry.

[8]  Michael P. Schroeder,et al.  PAX5 biallelic genomic alterations define a novel subgroup of B-cell precursor acute lymphoblastic leukemia , 2019, Leukemia.

[9]  F. Sigaux,et al.  PAX5 P80R mutation identifies a novel subtype of B-cell precursor acute lymphoblastic leukemia with favorable outcome. , 2019, Blood.

[10]  Ashley D. Hill,et al.  PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia , 2019, Nature Genetics.

[11]  J. Stuchly,et al.  Genomic landscape of pediatric B-other acute lymphoblastic leukemia in a consecutive European cohort , 2019, Haematologica.

[12]  C. Pui,et al.  Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases , 2018, Proceedings of the National Academy of Sciences.

[13]  J. Flowers,et al.  Origins and geographic diversification of African rice (Oryza glaberrima) , 2018, bioRxiv.

[14]  Sean C. Bendall,et al.  Single-cell developmental classification of B cell precursor acute lymphoblastic leukemia at diagnosis reveals predictors of relapse , 2018, Nature Medicine.

[15]  D. Esposito,et al.  Mutant IL-7Rα and mutant NRas are sufficient to induce murine T cell acute lymphoblastic leukemia , 2018, Leukemia.

[16]  Nancy R. Zhang,et al.  CODEX2: full-spectrum copy number variation detection by high-throughput DNA sequencing , 2017, Genome Biology.

[17]  M. Loh,et al.  Oncogenic role and therapeutic targeting of ABL-class and JAK-STAT activating kinase alterations in Ph-like ALL. , 2017, Blood advances.

[18]  M. Loh,et al.  Targetable kinase gene fusions in high-risk B-ALL: a study from the Children's Oncology Group. , 2017, Blood.

[19]  T Terwilliger,et al.  Acute lymphoblastic leukemia: a comprehensive review and 2017 update , 2017, Blood Cancer Journal.

[20]  A. Tanay,et al.  Suppressors and activators of JAK-STAT signaling at diagnosis and relapse of acute lymphoblastic leukemia in Down syndrome , 2017, Proceedings of the National Academy of Sciences.

[21]  M. Farrar,et al.  STAT5 antagonism of B cell enhancer networks drives leukemia and poor patient survival , 2017, Nature Immunology.

[22]  A. Roberts Venetoclax: a primer. , 2017, Blood advances.

[23]  C. Mullighan,et al.  Genetic Basis of Acute Lymphoblastic Leukemia. , 2017, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[24]  M. Loh,et al.  Potent efficacy of combined PI3K/mTOR and JAK or ABL inhibition in murine xenograft models of Ph-like acute lymphoblastic leukemia. , 2017, Blood.

[25]  M. Loh,et al.  Ph-like acute lymphoblastic leukemia. , 2016, Hematology. American Society of Hematology. Education Program.

[26]  Marco Y. Hein,et al.  The Perseus computational platform for comprehensive analysis of (prote)omics data , 2016, Nature Methods.

[27]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[28]  J. Choi,et al.  LNK/SH2B3 regulates IL-7 receptor signaling in normal and malignant B-progenitors. , 2016, The Journal of clinical investigation.

[29]  J. Mesirov,et al.  The Molecular Signatures Database Hallmark Gene Set Collection , 2015 .

[30]  S. Constantinescu,et al.  Infection Exposure is a Causal Factor in B-cell Precursor Acute Lymphoblastic Leukemia as a Result of Pax5-Inherited Susceptibility. , 2015, Cancer discovery.

[31]  M. Cleary,et al.  Comparative genomics reveals multistep pathogenesis of E2A-PBX1 acute lymphoblastic leukemia. , 2015, The Journal of clinical investigation.

[32]  Mikhail Shugay,et al.  MiXCR: software for comprehensive adaptive immunity profiling , 2015, Nature Methods.

[33]  C. Xiao,et al.  hCD2-iCre and Vav-iCre Mediated Gene Recombination Patterns in Murine Hematopoietic Cells , 2015, PloS one.

[34]  E. Passegué,et al.  Identification of FOXM1 as a therapeutic target in B-cell lineage acute lymphoblastic leukaemia , 2015, Nature Communications.

[35]  Nancy R. Zhang,et al.  CODEX: a normalization and copy number variation detection method for whole exome sequencing , 2015, Nucleic acids research.

[36]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[37]  Marco Y. Hein,et al.  A “Proteomic Ruler” for Protein Copy Number and Concentration Estimation without Spike-in Standards* , 2014, Molecular & Cellular Proteomics.

[38]  Heather L. Mulder,et al.  Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. , 2014, The New England journal of medicine.

[39]  C. Wallington-Beddoe,et al.  Sphingosine kinase 2 promotes acute lymphoblastic leukemia by enhancing MYC expression. , 2014, Cancer research.

[40]  A. Melnick,et al.  Mechanistic rationale for targeting the unfolded protein response in pre-B acute lymphoblastic leukemia , 2014, Proceedings of the National Academy of Sciences.

[41]  C. Mullighan,et al.  Interleukin-7 receptor mutants initiate early T cell precursor leukemia in murine thymocyte progenitors with multipotent potential , 2014, The Journal of experimental medicine.

[42]  Malay Mandal,et al.  Orchestrating B cell lymphopoiesis through interplay of IL-7 receptor and pre-B cell receptor signalling , 2013, Nature Reviews Immunology.

[43]  K. Hozumi,et al.  In vivo leukemogenic potential of an interleukin 7 receptor α chain mutant in hematopoietic stem and progenitor cells. , 2013, Blood.

[44]  P. Kastner,et al.  Ikaros is absolutely required for pre-B cell differentiation by attenuating IL-7 signals , 2013, The Journal of experimental medicine.

[45]  Alfonso Valencia,et al.  RUbioSeq: a suite of parallelized pipelines to automate exome variation and bisulfite-seq analyses , 2013, Bioinform..

[46]  Christopher J. Ott,et al.  BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. , 2012, Blood.

[47]  D. Bluteau,et al.  MYH10 protein expression in platelets as a biomarker of RUNX1 and FLI1 alterations. , 2012, Blood.

[48]  Ryan D. Morin,et al.  Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. , 2012, Cancer cell.

[49]  A. Ferrando,et al.  Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia , 2011, Nature Genetics.

[50]  A. Dinner,et al.  Epigenetic repression of the Igk locus by STAT5-mediated Ezh2 recruitment , 2011, Nature immunology.

[51]  Thomas M. Keane,et al.  Mouse genomic variation and its effect on phenotypes and gene regulation , 2011, Nature.

[52]  J. Demengeot,et al.  IL-7 contributes to the progression of human T-cell acute lymphoblastic leukemias. , 2011, Cancer research.

[53]  M. Farrar,et al.  Ebf1 or Pax5 haploinsufficiency synergizes with STAT5 activation to initiate acute lymphoblastic leukemia , 2011, The Journal of experimental medicine.

[54]  M. Muckenthaler,et al.  Gain-of-function mutations in interleukin-7 receptor-α (IL7R) in childhood acute lymphoblastic leukemias , 2011, The Journal of experimental medicine.

[55]  F. Antunes,et al.  Intracellular reactive oxygen species are essential for PI3K/Akt/mTOR-dependent IL-7-mediated viability of T-cell acute lymphoblastic leukemia cells , 2011, Leukemia.

[56]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[57]  H. Kestler,et al.  Early relapse in ALL is identified by time to leukemia in NOD/SCID mice and is characterized by a gene signature involving survival pathways. , 2011, Cancer cell.

[58]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[59]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[60]  S. Nelson,et al.  BFAST: An Alignment Tool for Large Scale Genome Resequencing , 2009, PloS one.

[61]  E. Birney,et al.  Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt , 2009, Nature Protocols.

[62]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[63]  M. Mann,et al.  Universal sample preparation method for proteome analysis , 2009, Nature Methods.

[64]  L. Barsky,et al.  IL-7 Dependence in Human B Lymphopoiesis Increases during Progression of Ontogeny from Cord Blood to Bone Marrow1 , 2009, The Journal of Immunology.

[65]  W. Evans,et al.  A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. , 2009, The Lancet. Oncology.

[66]  Cheng Cheng,et al.  In Vivo Response to Methotrexate Forecasts Outcome of Acute Lymphoblastic Leukemia and Has a Distinct Gene Expression Profile , 2008, PLoS medicine.

[67]  F. Schnütgen,et al.  Adopting the good reFLEXes when generating conditional alterations in the mouse genome , 2007, Transgenic Research.

[68]  Wolfgang Huber,et al.  Analysis of cell-based RNAi screens , 2006, Genome Biology.

[69]  D. Neuberg,et al.  Mutations of the transcription factor PU.1 are not associated with acute lymphoblastic leukaemia , 2006, British Journal of Cancer.

[70]  T. Lebien,et al.  Murine and Human IL-7 Activate STAT5 and Induce Proliferation of Normal Human Pro-B Cells1 , 2005, The Journal of Immunology.

[71]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[72]  J. Barata,et al.  Activation of PI3K Is Indispensable for Interleukin 7–mediated Viability, Proliferation, Glucose Use, and Growth of T Cell Acute Lymphoblastic Leukemia Cells , 2004, The Journal of experimental medicine.

[73]  A. Singer,et al.  Suppression of IL7Ralpha transcription by IL-7 and other prosurvival cytokines: a novel mechanism for maximizing IL-7-dependent T cell survival. , 2004, Immunity.

[74]  V. Brown,et al.  Rapamycin is active against B-precursor leukemia in vitro and in vivo, an effect that is modulated by IL-7-mediated signaling , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Mark Coles,et al.  Transgenic mice with hematopoietic and lymphoid specific expression of Cre , 2003, European journal of immunology.

[76]  J. Minna,et al.  MYO18B, a candidate tumor suppressor gene at chromosome 22q12.1, deleted, mutated, and methylated in human lung cancer , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[77]  J. Barata,et al.  Interleukin-7 promotes survival and cell cycle progression of T-cell acute lymphoblastic leukemia cells by down-regulating the cyclin-dependent kinase inhibitor p27(kip1). , 2001, Blood.

[78]  W. Leonard,et al.  Mutations in the gene for the IL-7 receptor result in T(-)B(+)NK(+) severe combined immunodeficiency disease. , 2000, Current opinion in immunology.

[79]  S. Burdach,et al.  Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine , 1995, The Journal of experimental medicine.

[80]  C. Ware,et al.  Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice , 1994, The Journal of experimental medicine.

[81]  J. Cleveland,et al.  Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. , 1991, Oncogene.

[82]  J. Mesirov,et al.  The Molecular Signatures Database (MSigDB) hallmark gene set collection. , 2015, Cell systems.

[83]  Ira M. Hall,et al.  BEDTools: a flexible suite of utilities for comparing genomic features , 2010, Bioinform..

[84]  Claude-Alain H. Roten,et al.  Fast and accurate short read alignment with Burrows–Wheeler transform , 2009, Bioinform..

[85]  F. Alt,et al.  Interleukin-7 induces N-myc and c-myc expression in normal precursor B lymphocytes. , 1992, Genes & development.