Curvature operators and scalar curvature invariants
暂无分享,去创建一个
[1] A. Coley,et al. Note on the invariant classification of vacuum type D spacetimes , 2009, 0911.4923.
[2] A. Coley,et al. Higher dimensional bivectors and classification of the Weyl operator , 2009, 0909.1160.
[3] A. Coley,et al. Spacetimes characterized by their scalar curvature invariants , 2009, 0901.0791.
[4] A. Coley,et al. Kundt spacetimes , 2009, 0901.0394.
[5] Nicos Pelavas,et al. Lorentzian spacetimes with constant curvature invariants in four dimensions , 2007, 0904.4877.
[6] A. Coley. Classification of the Weyl tensor in higher dimensions and applications , 2007, 0710.1598.
[7] Claudio Procesi,et al. Lie Groups: An Approach through Invariants and Representations , 2006 .
[8] A. Coley,et al. On spacetimes with constant scalar invariants , 2005, gr-qc/0509113.
[9] E. García‐Río,et al. Curvature properties of four-dimensional Walker metrics , 2005 .
[10] P. Negi,et al. Exact Solutions of Einstein's Field Equations , 2004, gr-qc/0401024.
[11] R. Milson,et al. All spacetimes with vanishing curvature invariants , 2002, gr-qc/0209024.
[12] Peter R. Law,et al. Neutral Einstein metrics in four dimensions , 1991 .
[13] W. Kinnersley. TYPE D VACUUM METRICS. , 1969 .
[14] E. Kasner. Geometrical theorems on Einstein's cosmological equations , 1921 .
[15] Lieven Vanhecke,et al. Curvature invariants, differential operators and local homogeneity , 1996 .
[16] A. G. Walker. Canonical forms (ii): parallel partially null planes , 1950 .
[17] A. G. Walker. Canonical form for a Riemannian space with a parallel field of null planes , 1950 .