Curvature operators and scalar curvature invariants

We continue the study of the question of when a pseudo-Riemannain manifold can be locally characterized by its scalar polynomial curvature invariants (constructed from the Riemann tensor and its covariant derivatives). We make further use of the alignment theory and the bivector form of the Weyl operator in higher dimensions and introduce the important notions of diagonalizability and (complex) analytic metric extension. We show that if there exists an analytic metric extension of an arbitrary dimensional space of any signature to a Riemannian space (of Euclidean signature), then that space is characterized by its scalar curvature invariants. In particular, we discuss the Lorentzian case and the neutral signature case in four dimensions in more detail.

[1]  A. Coley,et al.  Note on the invariant classification of vacuum type D spacetimes , 2009, 0911.4923.

[2]  A. Coley,et al.  Higher dimensional bivectors and classification of the Weyl operator , 2009, 0909.1160.

[3]  A. Coley,et al.  Spacetimes characterized by their scalar curvature invariants , 2009, 0901.0791.

[4]  A. Coley,et al.  Kundt spacetimes , 2009, 0901.0394.

[5]  Nicos Pelavas,et al.  Lorentzian spacetimes with constant curvature invariants in four dimensions , 2007, 0904.4877.

[6]  A. Coley Classification of the Weyl tensor in higher dimensions and applications , 2007, 0710.1598.

[7]  Claudio Procesi,et al.  Lie Groups: An Approach through Invariants and Representations , 2006 .

[8]  A. Coley,et al.  On spacetimes with constant scalar invariants , 2005, gr-qc/0509113.

[9]  E. García‐Río,et al.  Curvature properties of four-dimensional Walker metrics , 2005 .

[10]  P. Negi,et al.  Exact Solutions of Einstein's Field Equations , 2004, gr-qc/0401024.

[11]  R. Milson,et al.  All spacetimes with vanishing curvature invariants , 2002, gr-qc/0209024.

[12]  Peter R. Law,et al.  Neutral Einstein metrics in four dimensions , 1991 .

[13]  W. Kinnersley TYPE D VACUUM METRICS. , 1969 .

[14]  E. Kasner Geometrical theorems on Einstein's cosmological equations , 1921 .

[15]  Lieven Vanhecke,et al.  Curvature invariants, differential operators and local homogeneity , 1996 .

[16]  A. G. Walker Canonical forms (ii): parallel partially null planes , 1950 .

[17]  A. G. Walker Canonical form for a Riemannian space with a parallel field of null planes , 1950 .