VI: Free-Space Optical Digital Computing and Interconnection

Publisher Summary This chapter reviews the progress made in the area of digital free-space optics. Digital computing is a complex task. The chapter discusses all three areas of information technology: processing, communications, and storage. Optics is being considered for the various levels of interconnections in an electronic computing system. Depending on the transmission distance and interconnection density, different optics technologies are of interest. The chapter explains the hardware-related issues from a computational point of view. The potential of free-space digital optics is based on the parallelism of the interconnections and on the availability of suitable devices to implement logic operations. The physics of nonlinear devices and optical interconnections is described. The chapter focuses on semiconductor devices that have the potential for high speed. Some of the architectural and systems aspects relevant to free-space optical digital computing and switching are also discussed in the chapter.

[1]  R K Kostuk,et al.  Reducing alignment and chromatic sensitivity of holographic optical interconnects with substrate-mode holograms. , 1989, Applied optics.

[2]  M A Karim,et al.  Digital optical processing based on higher-order modified signed-digit symbolic substitution. , 1992, Applied optics.

[3]  S H Lee,et al.  Comparison between optical and electrical interconnects based on power and speed considerations. , 1988, Applied optics.

[4]  J. Jahns,et al.  Integrated planar optical imaging systems with high interconnection density. , 1993, Optics letters.

[5]  Werner Erhard,et al.  Parallele digitale optische Recheneinheiten , 1994 .

[6]  Jürgen Jahns,et al.  Diffractive Optical Elements for Optical Computers , 1994 .

[7]  Demetri Psaltis,et al.  Optical Neural Computers , 1987, Topical Meeting on Optical Computing.

[8]  F Sauer,et al.  Holographic telescope arrays. , 1988, Applied optics.

[9]  P. Dapkus,et al.  Large optical nonlinearities in a GaAs/AlGaAs hetero n‐i‐p‐i structure , 1988 .

[10]  Thomas J. Cloonan Free-space optical implementation of a feed forward crossbar network. , 1990, Applied optics.

[11]  Ho-In Jeon,et al.  Digital optical processor based on symbolic substitution using holographic matched filtering. , 1990, Applied optics.

[12]  A. A. Sawchuk,et al.  Geometries For Optical Implementations Of The Perfect Shuffle , 1989, Other Conferences.

[13]  A. Lohmann What classical optics can do for the digital optical computer. , 1986, Applied optics.

[14]  Cauligi S. Raghavendra,et al.  Optical Crossbar Networks , 1987, Computer.

[15]  Frank Sauer,et al.  Refractive-diffractive micro-optics for permutation interconnects , 1994 .

[16]  Hyatt M. Gibbs,et al.  Optical bistability in semiconductors , 1979 .

[17]  P. S. Guilfoyle General Purpose Optical Digital Computer , 1989, Other Conferences.

[18]  T J Suleski,et al.  Generation of Lohmann images from binary-phase Talbot array illuminators. , 1997, Applied optics.

[19]  Y. Ichioka,et al.  Optical parallel logic gates using a shadow-casting system for optical digital computing , 1984, Proceedings of the IEEE.

[20]  S H Lee,et al.  Design issues and development of monolithic silicon/lead lanthanum zirconate titanate integration technologies for smart spatial light modulators. , 1992, Applied optics.

[21]  N. Hatori,et al.  Lasing characteristics of low-threshold oxide confinement InGaAs-GaAlAs vertical-cavity surface-emitting lasers , 1995, IEEE Photonics Technology Letters.

[22]  K Kitayama,et al.  Design considerations of the optical image crossbar switch. , 1992, Applied optics.

[23]  Ashok V. Krishnamoorthy,et al.  A prototype 3D optically interconnected neural network , 1994 .

[24]  Francis T. S. Yu,et al.  Optical Information Processing , 1982 .

[25]  F. Okuyama,et al.  Tungsten needles produced by decomposition of hexacarbonyltungsten , 1979 .

[26]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[27]  J. Goodman Introduction to Fourier optics , 1969 .

[28]  J Jahns,et al.  Integrated micro-optical imaging system with a high interconnection capacity fabricated in planar optics. , 1997, Applied optics.

[29]  Joseph Zyss,et al.  Molecular nonlinear optics , 1993 .

[30]  Rolf Landauer,et al.  Optical Logic and Optically Accessed Digital Storage , 1976 .

[31]  Michael J. Flynn,et al.  Very high-speed computing systems , 1966 .

[32]  W. Talbot Facts relating to optical science , 1836 .

[33]  K. Johnson,et al.  Optical interconnection network using polarization-based ferroelectric liquid crystal gates. , 1988, Applied optics.

[34]  D. Kossives,et al.  GaAs MQW modulators integrated with silicon CMOS , 1995, IEEE Photonics Technology Letters.

[35]  V Arrizón,et al.  Efficiency limit of spatially quantized Fourier array illuminators. , 1997, Optics letters.

[36]  Harold S. Stone,et al.  Parallel Processing with the Perfect Shuffle , 1971, IEEE Transactions on Computers.

[37]  J. Goodman Optical interconnection for VLSI , 1984 .

[38]  S. Etemad Chapter 10 – THIRD-ORDER NLO PROCESSES IN POLYDIACETYLENES: PHYSICS, MATERIALS, AND DEVICES , 1994 .

[39]  Yunlong Sheng,et al.  Light effective 2-D optical perfect shuffle using Fresnel mirrors. , 1989, Applied optics.

[40]  N Streibl,et al.  Array illuminator based on phase contrast. , 1988, Applied optics.

[41]  Liren Liu,et al.  One-operation image algebra and optoelectronic cellular two-layer logic array , 1994 .

[42]  K H Brenner,et al.  Optical implementations of the perfect shuffle interconnection. , 1988, Applied optics.

[43]  Adolf W. Lohmann Image formation of dilute arrays for optical information processing , 1991 .

[44]  Rick L. Morrison,et al.  Symmetries that simplify the design of spot array phase gratings , 1992 .

[45]  A W Lohmann,et al.  Globality and speed of optical parallel processors. , 1989, Applied optics.

[46]  Charles Clos,et al.  A study of non-blocking switching networks , 1953 .

[47]  Thomas J. Cloonan,et al.  Optical Implementation And Performance Of One-Dimensional And Two-Dimensional Trimmed Inverse Augmented Data Manipulator Networks For Multiprocessor Computer Systems , 1989 .

[48]  Jürgen Jahns Optical implementation of the Banyan network , 1990 .

[49]  Jan Westerholm,et al.  Kinoform Phase Relief Synthesis: A Stochastic Method , 1989 .

[50]  M E Prise,et al.  Optical digital processor using arrays of symmetric self-electrooptic effect devices. , 1991, Applied optics.

[51]  Kenneth E. Batcher,et al.  Sorting networks and their applications , 1968, AFIPS Spring Joint Computing Conference.

[52]  Miles Murdocca Digital design methodology for optical computing , 1990 .

[53]  Frederick B. McCormick Generation Of Large Spot Arrays From A Single Laser Beam By Multiple Imaging With Binary Phase Gratings , 1989 .

[54]  H. S. Hinton,et al.  Optical Logic Devices , 1993 .

[55]  A W Lohmann,et al.  Scaling laws for lens systems. , 1989, Applied optics.

[56]  Alastair D. McAulay,et al.  Optical computer architectures , 1991 .

[57]  Hugo Thienpont,et al.  Free-space optical interconnect and processing demonstrators with arrays of light-emitting thyristors , 1997, Photonics West.

[58]  K H Brenner,et al.  Optical symbolic substitution: system design using phase-only holograms. , 1988, Applied optics.

[59]  Anthony L. Lentine,et al.  Batch fabrication and operation of GaAs-Al/sub x/Ga/sub 1-x/As field-effect transistor-self-electrooptic effect device (FET-SEED) smart pixel arrays , 1993 .

[60]  R W Keyes,et al.  Thermal limitations in optical logic. , 1969, Applied optics.

[61]  S. Asai,et al.  Technology challenges for integration near and below 0.1 μm , 1997, Proc. IEEE.

[62]  Toyohiko Yatagai Optical Cellular Logic Computers And Space-Variant Logic Gate Array , 1986, Other Conferences.

[63]  F.J. Leonberger,et al.  Optical interconnections for VLSI systems , 1984, Proceedings of the IEEE.

[64]  A. Boxer Where buses cannot go , 1995 .

[65]  Anthony L. Lentine,et al.  Free-space digital optical systems , 1994 .

[66]  H. M. Gibbs,et al.  Differential Gain and Bistability Using a Sodium-Filled Fabry-Perot Interferometer , 1976 .

[67]  J R Leger,et al.  Efficient array illuminator using binary-optics phase plates at fractional-Talbot planes. , 1990, Optics letters.

[68]  Charles N. Ironside,et al.  Principles and Applications of Nonlinear Optical Materials , 1993 .

[69]  H. Dammann,et al.  High-efficiency in-line multiple imaging by means of multiple phase holograms , 1971 .

[70]  J. E. Midwinter Novel approach to the design of optically activated wideband switching matrices , 1987 .

[71]  V Arrizón,et al.  Multilevel phase gratings for array illuminators. , 1994, Applied optics.

[72]  T J Cloonan,et al.  Optical design of a digital switch. , 1989, Applied optics.

[73]  M. Taghizadeh,et al.  Detour-phase kinoform interconnects: the concept and fabrication considerations , 1990 .

[74]  Gregory L. Baker,et al.  Conjugated Polymers For Nonlinear Optics , 1988, Optics & Photonics.

[75]  J N Mait,et al.  Design of Dammann gratings for two-dimensional, nonseparable, noncentrosymmetric responses. , 1989, Optics letters.

[76]  A Louri,et al.  Parallel implementation of optical symbolic substitution logic using shadow-casting and polarization. , 1990, Applied optics.

[77]  A. Lohmann,et al.  Array of Brewster telescopes. , 1989, Applied optics.

[78]  J. Ojeda-Castañeda,et al.  Talbot array illuminators with binary phase gratings. , 1993, Optics letters.

[79]  T J Cloonan,et al.  Experimental investigation of a free-space optical switching network by using symmetric self-electro-optic-effect devices. , 1992, Applied optics.

[80]  A Huang,et al.  Planar integration of free-space optical components. , 1989, Applied optics.

[81]  J Jahns,et al.  Crossover networks and their optical implementation. , 1988, Applied optics.

[82]  S. Hino,et al.  Optical beam direction compensating system for board-to-board free space optical interconnection in high-capacity ATM switch , 1997 .

[83]  B S Wherrett,et al.  Optical cellular logic image processor: implementation and programming of a single channel digital optical circuit. , 1991, Applied optics.

[84]  J Shamir,et al.  Fundamental speed limitations on parallel processing. , 1987, Applied optics.

[85]  A Huang Computational origami: the folding of circuits and systems. , 1992, Applied optics.

[86]  Jürgen Jahns,et al.  Optical cyclic shifter using diffractive lenslet arrays , 1990 .

[87]  J.J. Brown,et al.  Optically powered, integrated 'smart' pixels for optical interconnection networks , 1991, IEEE Photonics Technology Letters.

[88]  L Cheng,et al.  Three-dimensional Omega networks for optical implementation. , 1992, Applied optics.

[89]  Mansoor Sheik-Bahae,et al.  Dispersion of bound electron nonlinear refraction in solids , 1991 .

[90]  N. Streibl,et al.  Design of dammann-gratings for array generation , 1989 .

[91]  S. Kawai,et al.  Free-space multistage optical interconnection networks using micro lens arrays , 1991 .

[92]  Jürgen Jahns,et al.  Optical Computing Hardware , 1994 .

[93]  Alexander A. Sawchuk,et al.  Parallel architectures for digital optical cellular image processing , 1994 .

[94]  T. Maiman Stimulated Optical Radiation in Ruby , 1960, Nature.

[95]  Jürgen Jahns,et al.  Array generation with multilevel phase gratings , 1990 .

[96]  A.A. Sawchuk,et al.  Digital optical computing , 1984, Proceedings of the IEEE.

[97]  P. Chavel,et al.  Perspectives for Parallel Optical Interconnects , 1993, ESPRIT Basic Research Series.

[98]  Jürgen Jahns,et al.  Planar packaging of free-space optical interconnections , 1994, Proc. IEEE.

[99]  M. M. Downs,et al.  Optical considerations in the design of digital optical computers , 1988 .

[100]  Craig Partridge,et al.  Gigabit networking , 1993, Addison-Wesley professional computing series.

[101]  Karl-Heinz Brenner,et al.  Digital optical computing with symbolic substitution. , 1986 .

[102]  H. Wong,et al.  CMOS scaling into the nanometer regime , 1997, Proc. IEEE.

[103]  M J Murdocca Digital optical computing with one-rule cellular automata. , 1987, Applied optics.

[104]  M. R. Taghizadeh,et al.  Optically Bistable Thin-Film Interference Devices And Holographic Techniques For Experiments In Digital Optics , 1988 .

[105]  K. Kasahara VSTEP-based smart pixels , 1993 .

[106]  A. L. Lentine,et al.  Symmetric self-electrooptic effect device : optical set-reset latch, defferential logic gate and differential modulator/detector , 1989 .

[107]  J W Goodman,et al.  Optical computation using residue arithmetic. , 1979, Applied optics.

[108]  Duncan H. Lawrie,et al.  Access and Alignment of Data in an Array Processor , 1975, IEEE Transactions on Computers.

[109]  W.T. Rhodes,et al.  Acoustooptic algebraic processing architectures , 1984, Proceedings of the IEEE.

[110]  T. J. Drabik,et al.  Optoelectronic integrated systems based on free-space interconnects with an arbitrary degree of space variance , 1994, Proc. IEEE.

[111]  Takashi Kurokawa,et al.  Photonic memory switch consisting of multiple quantum well reflection modulator and heterojunction phototransistor , 1992 .

[112]  C. Burrus,et al.  Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect , 1984 .

[113]  N. Streibl,et al.  Array generation with lenslet arrays. , 1991, Applied optics.

[114]  Jürgen Jahns,et al.  Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system , 1994 .

[115]  D. Miller Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters. , 1989, Optics letters.

[116]  David A. B. Miller,et al.  Optical bistability and signal amplification in a semiconductor crystal: applications of new low‐power nonlinear effects in InSb , 1979 .

[117]  Norbert Streibl,et al.  Optoelectronic array interconnections , 1992 .

[118]  Kai Hwang,et al.  Optical Multiplication And Division Using Modified-Signed-Digit Symbolic Substitution , 1989 .

[119]  Gustaaf Borghs,et al.  Fast turn-off of two-terminal double-heterojunction optical thyristors , 1992 .

[120]  T. Kubota,et al.  Array illuminator using grating couplers. , 1989, Optics letters.

[121]  B. Tell,et al.  Top-surface-emitting GaAs four-quantum-well lasers emitting at 0.85 mu m , 1990 .

[122]  Karlheinz H. Gulden,et al.  N-i-p-i-based high-speed detectors and bistable switches with gain , 1992, Other Conferences.

[123]  Rick L. Morrison,et al.  Parallel interconnection of two 64*32 symmetric selfelectro-optic effect device arrays , 1991 .

[124]  James D. Meindl,et al.  Low power microelectronics: retrospect and prospect , 1995, Proc. IEEE.

[125]  E. O. Schulz-Dubois,et al.  Laser Handbook , 1972 .

[126]  R. Keyes Power dissipation in information processing. , 1970, Science.

[127]  P. Dapkus,et al.  Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation , 1995 .

[128]  Robert A. Morgan Improvements in self electro-optic effect devices: toward system implementation , 1991, Optics & Photonics.

[129]  Leo M. F. Chirovsky,et al.  Progress in planarized vertical-cavity surface-emitting laser devices and arrays , 1991, Optics & Photonics.

[130]  B. K. Jenkins,et al.  Implementation Of A Prototype Digital Optical Cellular Image Processor (DOCIP) , 1989, Other Conferences.

[131]  N. C. Gallagher,et al.  Method for Computing Kinoforms that Reduces Image Reconstruction Error. , 1973, Applied optics.

[132]  Arif Ghafoor,et al.  Optics and supercomputing , 1989, Proc. IEEE.

[133]  Kenichi Iga,et al.  Surface emitting semiconductor lasers , 1988 .

[134]  A. Huang,et al.  Architectural considerations involved in the design of an optical digital computer , 1984, Proceedings of the IEEE.

[135]  K H Brenner Programmable optical processor based on symbolic substitution. , 1988, Applied optics.

[136]  W Stork,et al.  Optical perfect shuffle. , 1986, Applied optics.

[137]  R Thalmann,et al.  Optical symbolic substitution using diffraction gratings. , 1990, Applied optics.

[138]  M. E. Prise,et al.  Dammann Gratings For Laser Beam Shaping , 1989 .

[139]  Jürgen Jahns,et al.  Optical clock distribution using integrated free-space optics , 1992 .

[140]  R A Athale,et al.  Folded perfect shuffle optical processor. , 1988, Applied optics.

[141]  A P Goutzoulis,et al.  Optical processing with residue LED/LD lookup tables. , 1988, Applied optics.

[142]  C D Capps,et al.  Arithmetic/logic unit based on optical crossbar architecture. , 1988, Applied optics.

[143]  J M Wang,et al.  Optical cellular processor architecture. 1: Principles. , 1988, Applied optics.

[144]  D Psaltis,et al.  Optical information processing based on an associative-memory model of neural nets with thresholding and feedback. , 1985, Optics letters.

[145]  Norbert Streibl,et al.  Beam Shaping with Optical Array Generators , 1989 .

[146]  David L. Kuck,et al.  The Structure of Computers and Computations , 1978 .

[147]  Gustaaf Borghs,et al.  Cascadable differential PnpN optoelectronic switch operating at 50 Mbit/s with ultrahigh optical input sensitivity , 1995 .

[148]  J W Goodman,et al.  Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms. , 1978, Optics letters.

[149]  Alan Huang,et al.  Starlite: a wideband digital switch , 1991 .

[150]  H. S. Hinton,et al.  Optical interconnections using microlens arrays , 1992 .

[151]  R. L. Fork Physics of optical switching , 1982 .

[152]  M T Gale,et al.  Continuous-relief diffractive optical elements for two-dimensional array generation. , 1993, Applied optics.

[153]  H. B. Bakoglu,et al.  Circuits, interconnections, and packaging for VLSI , 1990 .

[154]  R A Athale,et al.  Sorting with optical compare-and-exchange modules. , 1988, Applied optics.

[155]  David A. B. Miller,et al.  Quantum Wells For Optical Information Processing , 1987 .

[156]  Jürgen Jahns,et al.  Efficient Hadamard transformation of large images , 1983 .

[157]  Y Li,et al.  Optical higher-order symbolic recognition. , 1990, Applied optics.

[158]  Kenichi Kasahara,et al.  Double heterostructure optoelectronic switch as a dynamic memory with low-power consumption , 1988 .

[159]  Y Li,et al.  Compact optical generalized perfect shuffle. , 1987, Applied optics.

[160]  H. J. Caulfield,et al.  Optical implementation of systolic array processing , 1981 .

[161]  H. Scott Hinton,et al.  Architectural considerations for photonic switching networks , 1988, IEEE J. Sel. Areas Commun..

[162]  C. T. Seaton,et al.  Band-Gap—Resonant Nonlinear Refraction in III-V Semiconductors , 1981 .

[163]  Brian S. Wherrett,et al.  Fabry-Perot bistable cavity optimization on reflection , 1984 .

[164]  H. Talbot,et al.  LXXVI. Facts relating to optical science. No. IV , 1834 .

[165]  Kazuo Kyuma,et al.  Differential optical comparator using parallel connected AlGaAs pnpn optical switches , 1989 .

[166]  P. Vettiger,et al.  Passive self-aligned low-cost packaging of semiconductor laser arrays on Si motherboard , 1995, IEEE Photonics Technology Letters.

[167]  M. C. Rushford,et al.  Use of a single nonlinear Fabry-Perot étalon as optical logic gates , 1984 .

[168]  J W Goodman,et al.  Implications of interconnection theory for optical digital computing. , 1992, Applied optics.

[169]  W. Daniel Hillis,et al.  The connection machine , 1985 .

[170]  Jack L. Jewell,et al.  Digital optics , 1989, Proc. IEEE.

[171]  E. J. Restall,et al.  Space-variant holographic optical elements in dichromated gelatin. , 1991, Applied optics.

[172]  H. B. Brown,et al.  Application Of The Liquid Crystal Light Valve To Real-Time Optical Data Processing , 1978 .

[173]  J. P. Harbison,et al.  Low threshold electrically pumped vertical cavity surface emitting microlasers , 1989, Annual Meeting Optical Society of America.

[174]  Krzysztof Patorski,et al.  I The Self-Imaging Phenomenon and its Applications , 1989 .

[175]  S Sinzinger,et al.  High-efficiency detour-phase holograms. , 1997, Optics letters.

[176]  A Huang,et al.  Optical design of programmable logic arrays. , 1988, Applied optics.

[177]  C C Guest,et al.  Iterative encoding of high-efficiency holograms for generation of spot arrays. , 1989, Optics letters.

[178]  P. W. Smith,et al.  On the physical limits of digital optical switching and logic elements , 1982, The Bell System Technical Journal.

[179]  T Sakano,et al.  Design and performance of a multiprocessor system employing board-to-board free-space optical interconnections: COSINE-1. , 1991, Applied optics.

[180]  J. Goldhar,et al.  BISTABLE OPTICAL ELEMENT AND ITS APPLICATIONS , 1969 .