Multiphase SPH simulation for interactive fluids and solids

This work extends existing multiphase-fluid SPH frameworks to cover solid phases, including deformable bodies and granular materials. In our extended multiphase SPH framework, the distribution and shapes of all phases, both fluids and solids, are uniformly represented by their volume fraction functions. The dynamics of the multiphase system is governed by conservation of mass and momentum within different phases. The behavior of individual phases and the interactions between them are represented by corresponding constitutive laws, which are functions of the volume fraction fields and the velocity fields. Our generalized multiphase SPH framework does not require separate equations for specific phases or tedious interface tracking. As the distribution, shape and motion of each phase is represented and resolved in the same way, the proposed approach is robust, efficient and easy to implement. Various simulation results are presented to demonstrate the capabilities of our new multiphase SPH framework, including deformable bodies, granular materials, interaction between multiple fluids and deformable solids, flow in porous media, and dissolution of deformable solids.

[1]  Joseph John Monaghan,et al.  SPH and Riemann Solvers , 1997 .

[2]  Matthias Teschner,et al.  Coupling elastic solids with smoothed particle hydrodynamics fluids , 2013, Comput. Animat. Virtual Worlds.

[3]  Bo Ren,et al.  Fast multiple-fluid simulation using Helmholtz free energy , 2015, ACM Trans. Graph..

[4]  Ha H. Bui,et al.  Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model , 2008 .

[5]  M. Teschner,et al.  Meshless deformations based on shape matching , 2005, SIGGRAPH 2005.

[6]  Philip Dutré,et al.  Porous flow in particle-based fluid simulations , 2008, ACM Trans. Graph..

[7]  Matthias Teschner,et al.  High-Resolution Simulation of Granular Material with SPH , 2012, VRIPHYS.

[8]  M. Manninen,et al.  On the mixture model for multiphase flow , 1996 .

[9]  Ming C. Lin,et al.  Implicit Formulation for SPH‐based Viscous Fluids , 2015, Comput. Graph. Forum.

[10]  Tae-Yong Kim,et al.  Unified particle physics for real-time applications , 2014, ACM Trans. Graph..

[11]  R. Hill The mathematical theory of plasticity , 1950 .

[12]  Miles Macklin,et al.  Position based fluids , 2013, ACM Trans. Graph..

[13]  Jan Bender,et al.  Divergence-free smoothed particle hydrodynamics , 2015, Symposium on Computer Animation.

[14]  Shi-Min Hu,et al.  Multiple-Fluid SPH Simulation Using a Mixture Model , 2014, ACM Trans. Graph..

[15]  M. Gross,et al.  Unified simulation of elastic rods, shells, and solids , 2010, SIGGRAPH 2010.

[16]  Markus H. Gross,et al.  Meshless deformations based on shape matching , 2005, ACM Trans. Graph..

[17]  Matthias Teschner,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Weakly Compressible Sph for Free Surface Flows , 2022 .

[18]  Rui Wang,et al.  Implicit Integration for Particle‐based Simulation of Elasto‐Plastic Solids , 2013, Comput. Graph. Forum.

[19]  D. Sulsky,et al.  A particle method for history-dependent materials , 1993 .

[20]  Matthias Teschner,et al.  Coupling Elastic Solids with SPH Fluids , 2013 .

[21]  Renato Pajarola,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2008) , 2022 .

[22]  Marc Alexa,et al.  Point based animation of elastic, plastic and melting objects , 2004, SCA '04.

[23]  David G. Schaeffer,et al.  Instability in the evolution equations describing incompressible granular flow , 1987 .

[24]  Yongning Zhu,et al.  Animating sand as a fluid , 2005, SIGGRAPH 2005.

[25]  Matthias Teschner,et al.  Corotated SPH for Deformable Solids , 2009, NPH.

[26]  Matthias Teschner,et al.  SPH Fluids in Computer Graphics , 2014, Eurographics.

[27]  Adam W. Bargteil,et al.  A point-based method for animating elastoplastic solids , 2009, SCA '09.

[28]  R. Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, SIGGRAPH 2009.

[29]  Yizhou Yu,et al.  Particle-based simulation of granular materials , 2005, SCA '05.

[30]  Ben Jones,et al.  Deformation embedding for point-based elastoplastic simulation , 2014, TOGS.

[31]  Miguel A. Otaduy,et al.  SPH granular flow with friction and cohesion , 2011, SCA '11.

[32]  M. Gross,et al.  Unified simulation of elastic rods, shells, and solids , 2010, ACM Trans. Graph..

[33]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[34]  Matthias Teschner,et al.  An implicit viscosity formulation for SPH fluids , 2015, ACM Trans. Graph..

[35]  J. Monaghan,et al.  SPH elastic dynamics , 2001 .

[36]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[37]  Matthias Müller,et al.  Solid simulation with oriented particles , 2011, ACM Trans. Graph..

[38]  N. Chentanez,et al.  Solid simulation with oriented particles , 2011, SIGGRAPH 2011.

[39]  Ming C. Lin,et al.  Free-flowing granular materials with two-way solid coupling , 2010, ACM Trans. Graph..

[40]  Wei Wu,et al.  A simple hypoplastic constitutive model for sand , 1994 .

[41]  Matthias Teschner,et al.  Implicit Incompressible SPH , 2014, IEEE Transactions on Visualization and Computer Graphics.

[42]  S. Attaway,et al.  Smoothed particle hydrodynamics stability analysis , 1995 .

[43]  P. W. Randles,et al.  Normalized SPH with stress points , 2000 .

[44]  G. Gudehus A COMPREHENSIVE CONSTITUTIVE EQUATION FOR GRANULAR MATERIALS , 1996 .

[45]  Robert Bridson,et al.  Animating sand as a fluid , 2005, ACM Trans. Graph..

[46]  Larry D. Libersky,et al.  Smooth particle hydrodynamics with strength of materials , 1991 .

[47]  Renato Pajarola,et al.  A unified particle model for fluid–solid interactions: Research Articles , 2007 .

[48]  B. Adams,et al.  Porous flow in particle-based fluid simulations , 2008, SIGGRAPH 2008.

[49]  Matthias Teschner,et al.  Versatile rigid-fluid coupling for incompressible SPH , 2012, ACM Trans. Graph..

[50]  Erich Bauer,et al.  CALIBRATION OF A COMPREHENSIVE HYPOPLASTIC MODEL FOR GRANULAR MATERIALS , 1996 .

[51]  Markus H. Gross,et al.  Eurographics Symposium on Point-based Graphics (2005) a Unified Lagrangian Approach to Solid-fluid Animation , 2022 .

[52]  Chenfanfu Jiang,et al.  Augmented MPM for phase-change and varied materials , 2014, ACM Trans. Graph..

[53]  Renato Pajarola,et al.  A unified particle model for fluid–solid interactions , 2007, Comput. Animat. Virtual Worlds.

[54]  Markus H. Gross,et al.  Particle-based fluid-fluid interaction , 2005, SCA '05.

[55]  Dimitrios Kolymbas,et al.  Computer-aided design of constitutive laws , 1991 .

[56]  Nadia Magnenat-Thalmann,et al.  Stable and Fast Fluid–Solid Coupling for Incompressible SPH , 2015, Comput. Graph. Forum.

[57]  Alexey Stomakhin,et al.  A material point method for snow simulation , 2013, ACM Trans. Graph..

[58]  Philip Dutré,et al.  Mixing Fluids and Granular Materials , 2009, Comput. Graph. Forum.