Sublinear Algorithms for Local Graph Centrality Estimation

We study the complexity of local graph centrality estimation, with the goal of approximating the centrality score of a given target node while exploring only a sublinear number of nodes/arcs of the graph and performing a sublinear number of elementary operations. We develop a technique, that we apply to the PageRank and Heat Kernel centralities, for building a low-variance score estimator through a local exploration of the graph. We obtain an algorithm that, given any node in any graph of m arcs, with probability (1-δ) computes a multiplicative (1±ε)-approximation of its score by examining only Õ(min(m^2/3 Δ^1/3 d^-2/3, m^4/5 d^-3/5)) nodes/arcs, where Δ and d are respectively the maximum and average outdegree of the graph (omitting for readability poly(ε^-1) and polylog(δ^-1) factors). A similar bound holds for computational cost. We also prove a lower bound of Ω(min (m^1/2 Δ^1/2 d^-1/2, m^2/3 d^-1/3)) for both query complexity and computational complexity. Moreover, our technique yields a Õ(n^2/3)-queries algorithm for an n-node graph in the access model of [Brautbar et al., 2010], widely used in social network mining; we show this algorithm is optimal up to a sublogarithmic factor. These are the first algorithms yielding worst-case sublinear bounds for general directed graphs and any choice of the target node.

[1]  Marco Bressan,et al.  Local computation of PageRank: the ranking side , 2011, CIKM '11.

[2]  Shang-Hua Teng,et al.  A Sublinear Time Algorithm for PageRank Computations , 2012, WAW.

[3]  Eli Upfal,et al.  PageRank on an evolving graph , 2012, KDD.

[4]  David F. Gleich,et al.  Heat kernel based community detection , 2014, KDD.

[5]  Silvio Lattanzi,et al.  On Sampling Nodes in a Network , 2016, WWW.

[6]  David F. Gleich,et al.  A Nearly-Sublinear Method for Approximating a Column of the Matrix Exponential for Matrices from Large, Sparse Networks , 2013, WAW.

[7]  Jimmy J. Lin,et al.  WTF: the who to follow service at Twitter , 2013, WWW.

[8]  Joel Oren,et al.  Influence at Scale: Distributed Computation of Complex Contagion in Networks , 2015, KDD.

[9]  Enoch Peserico,et al.  The power of local information in PageRank , 2013, WWW.

[10]  David F. Gleich,et al.  PageRank beyond the Web , 2014, SIAM Rev..

[11]  Shang-Hua Teng,et al.  A Local Clustering Algorithm for Massive Graphs and Its Application to Nearly Linear Time Graph Partitioning , 2008, SIAM J. Comput..

[12]  Desmond J. Higham,et al.  Network Properties Revealed through Matrix Functions , 2010, SIAM Rev..

[13]  Ashish Goel,et al.  FAST-PPR: scaling personalized pagerank estimation for large graphs , 2014, KDD.

[14]  Hector Garcia-Molina,et al.  Combating Web Spam with TrustRank , 2004, VLDB.

[15]  Enoch Peserico,et al.  Simple set cardinality estimation through random sampling , 2015, ArXiv.

[16]  David F. Gleich,et al.  Sublinear Column-wise Actions of the Matrix Exponential on Social Networks , 2013, Internet Math..

[17]  Torsten Suel,et al.  Local methods for estimating pagerank values , 2004, CIKM '04.

[18]  J. A. Rodríguez-Velázquez,et al.  Subgraph centrality in complex networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Fan Chung,et al.  The heat kernel as the pagerank of a graph , 2007, Proceedings of the National Academy of Sciences.

[20]  Nisheeth K. Vishnoi,et al.  Approximating the exponential, the lanczos method and an Õ(m)-time spectral algorithm for balanced separator , 2011, STOC '12.

[21]  Virgílio A. F. Almeida,et al.  Finding trendsetters in information networks , 2012, KDD.

[22]  Devavrat Shah,et al.  Asynchronous Approximation of a Single Component of the Solution to a Linear System , 2014, IEEE Transactions on Network Science and Engineering.

[23]  Vahab S. Mirrokni,et al.  Local Computation of PageRank Contributions , 2007, Internet Math..

[24]  Shang-Hua Teng,et al.  Sublinear Time Algorithm for PageRank Computations and Related Applications , 2012, ArXiv.

[25]  Fan Chung Graham,et al.  Local Graph Partitioning using PageRank Vectors , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[26]  Ashish Goel,et al.  Personalized PageRank Estimation and Search: A Bidirectional Approach , 2015, WSDM.

[27]  Philip S. Yu,et al.  Top 10 algorithms in data mining , 2007, Knowledge and Information Systems.

[28]  Fan Chung Graham,et al.  Computing heat kernel pagerank and a local clustering algorithm , 2014, Eur. J. Comb..

[29]  Ashish Goel,et al.  Bidirectional PageRank Estimation: From Average-Case to Worst-Case , 2015, WAW.

[30]  Awad H. Al-Mohy,et al.  Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators , 2011, SIAM J. Sci. Comput..

[31]  Dániel Fogaras,et al.  Towards Scaling Fully Personalized PageRank: Algorithms, Lower Bounds, and Experiments , 2005, Internet Math..

[32]  Fan Chung Graham,et al.  A Local Graph Partitioning Algorithm Using Heat Kernel Pagerank , 2009, Internet Math..

[33]  Enoch Peserico,et al.  On approximating the stationary distribution of time-reversible Markov chains , 2018, STACS.

[34]  Devavrat Shah,et al.  Computing the Stationary Distribution Locally , 2013, NIPS.

[35]  Anirban Dasgupta,et al.  On estimating the average degree , 2014, WWW.

[36]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[37]  Konstantin Avrachenkov,et al.  Monte Carlo Methods in PageRank Computation: When One Iteration is Sufficient , 2007, SIAM J. Numer. Anal..

[38]  David F. Gleich,et al.  Approximating Personalized PageRank with Minimal Use of Web Graph Data , 2006, Internet Math..

[39]  Fan Chung,et al.  A Brief Survey of PageRank Algorithms , 2014, IEEE Transactions on Network Science and Engineering.

[40]  Ziv Bar-Yossef,et al.  Local approximation of PageRank and reverse PageRank , 2008, SIGIR '08.

[41]  Leo Katz,et al.  A new status index derived from sociometric analysis , 1953 .

[42]  Siddhartha Banerjee,et al.  Sublinear estimation of a single element in sparse linear systems , 2016, 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[43]  Dana Ron,et al.  Property testing and its connection to learning and approximation , 1998, JACM.

[44]  David F. Gleich,et al.  An Optimization Approach to Locally-Biased Graph Algorithms , 2016, Proc. IEEE.

[45]  Siddhartha Banerjee,et al.  Fast Bidirectional Probability Estimation in Markov Models , 2015, NIPS.

[46]  Fan Chung Graham,et al.  Solving Local Linear Systems with Boundary Conditions Using Heat Kernel Pagerank , 2015, Internet Math..

[47]  Dana Ron,et al.  Property Testing in Bounded Degree Graphs , 1997, STOC.

[48]  Michael Kearns,et al.  Local Algorithms for Finding Interesting Individuals in Large Networks , 2010, ICS.