Engineered carbon mineralization in ultramafic rocks for CO2 removal from air: Review and new insights

[1]  Ipcc Global Warming of 1.5°C , 2022 .

[2]  P. Renforth,et al.  Ambient weathering of magnesium oxide for CO2 removal from air , 2020, Nature Communications.

[3]  V. Le Roux,et al.  Quantifying the volume increase and chemical exchange during serpentinization , 2020 .

[4]  P. Kelemen,et al.  Measurement of Volume Change and Mass Transfer During Serpentinization: Insights From the Oman Drilling Project , 2020, Journal of Geophysical Research: Solid Earth.

[5]  M. Ziegler,et al.  Ophiolite carbonation: Constraints from listvenite core BT1B, Oman Drilling Project , 2020 .

[6]  D. Paterson,et al.  Accelerating Mineral Carbonation in Ultramafic Mine Tailings via Direct CO2 Reaction and Heap Leaching with Potential for Base Metal Enrichment and Recovery , 2020 .

[7]  T. Amann,et al.  Enhanced Weathering and related element fluxes – a cropland mesocosm approach , 2020 .

[8]  P. Kelemen,et al.  Phase‐Field Modeling of Reaction‐Driven Cracking: Determining Conditions for Extensive Olivine Serpentinization , 2020, Journal of Geophysical Research: Solid Earth.

[9]  J. Wilcox,et al.  An Overview of the Status and Challenges of CO2 Storage in Minerals and Geological Formations , 2019, Front. Clim..

[10]  M. Ziegler,et al.  Ultramafic Rock Carbonation: Constraints From Listvenite Core BT1B, Oman Drilling Project , 2019, Journal of Geophysical Research: Solid Earth.

[11]  Charlotte K. Williams,et al.  The technological and economic prospects for CO2 utilization and removal , 2019, Nature.

[12]  M. Stute,et al.  Multitracer determination of apparent groundwater ages in peridotite aquifers within the Samail ophiolite, Sultanate of Oman , 2019, Earth and Planetary Science Letters.

[13]  Division on Earth,et al.  Negative Emissions Technologies and Reliable Sequestration , 2019 .

[14]  François Renard,et al.  Mixed‐Mode Strain Localization Generated by Hydration Reaction at Crustal Conditions , 2019, Journal of Geophysical Research: Solid Earth.

[15]  P. Renforth,et al.  The negative emission potential of alkaline materials , 2019, Nature Communications.

[16]  P. Asimow,et al.  Multiple Stages of Carbonation and Element Redistribution during Formation of Ultramafic-Hosted Magnesite in Neoproterozoic Ophiolites of the Arabian-Nubian Shield, Egypt , 2019, The Journal of Geology.

[17]  Magnús Þór Arnarson,et al.  The rapid and cost-effective capture and subsurface mineral storage of carbon and sulfur at the CarbFix2 site , 2018, International Journal of Greenhouse Gas Control.

[18]  C. Garrido,et al.  Carbonation of mantle peridotite by CO2-rich fluids: the formation of listvenites in the Advocate ophiolite complex (Newfoundland, Canada) , 2018, Lithos.

[19]  P. Kelemen,et al.  A Poroelastic Model of Serpentinization: Exploring the Interplay Between Rheology, Surface Energy, Reaction, and Fluid Flow , 2018, Journal of Geophysical Research: Solid Earth.

[20]  P. Kelemen,et al.  Fluid rock interactions on residual mantle peridotites overlain by shallow oceanic limestones: Insights from Wadi Fins, Sultanate of Oman , 2018, Chemical Geology.

[21]  P. Kelemen,et al.  Experimental Investigation of the Pressure of Crystallization of Ca(OH)2: Implications for the Reactive Cracking Process , 2018, Geochemistry, Geophysics, Geosystems.

[22]  David William Keith,et al.  A Process for Capturing CO2 from the Atmosphere , 2018, Joule.

[23]  François Renard,et al.  Effects of Confinement on Reaction‐Induced Fracturing During Hydration of Periclase , 2018, Geochemistry, Geophysics, Geosystems.

[24]  P. Asimow,et al.  On the relative timing of listwaenite formation and chromian spinel equilibration in serpentinites , 2018, American Mineralogist.

[25]  P. Kelemen,et al.  Competition Between Crystallization‐Induced Expansion and Creep Compaction During Gypsum Formation, and Implications for Serpentinization , 2018, Journal of Geophysical Research: Solid Earth.

[26]  I. Ioannou,et al.  Effect of ball milling on the carbon sequestration efficiency of serpentinized peridotites , 2018 .

[27]  D. Paterson,et al.  Fate of transition metals during passive carbonation of ultramafic mine tailings via air capture with potential for metal resource recovery , 2018 .

[28]  D. Beerling,et al.  Farming with crops and rocks to address global climate, food and soil security , 2018, Nature Plants.

[29]  B. Reynard,et al.  Multi-scale characterization of the incipient carbonation of peridotite , 2018 .

[30]  K. Michibayashi,et al.  Peridotite carbonation at the leading edge of the mantle wedge: OmDP Site BT1 , 2017 .

[31]  I. Ioannou,et al.  Carbon sequestration via enhanced weathering of peridotites and basalts in seawater , 2017 .

[32]  E. A. Lima,et al.  Multi-scale magnetic mapping of serpentinite carbonation , 2017, Nature Communications.

[33]  W. Zhu,et al.  Dissolution‐Assisted Pattern Formation During Olivine Carbonation , 2017 .

[34]  N. Brantut,et al.  Control of serpentinisation rate by reaction-induced cracking , 2017 .

[35]  C. Spiers,et al.  The Force of Crystallization and Fracture Propagation during In-Situ Carbonation of Peridotite , 2017 .

[36]  T. Tsujimori,et al.  Relict chromian spinels in Tulu Dimtu serpentinites and listvenite, Western Ethiopia: implications for the timing of listvenite formation , 2017 .

[37]  J. Matter,et al.  Potential for offsetting diamond mine carbon emissions through mineral carbonation of processed kimberlite: an assessment of De Beers mine sites in South Africa and Canada , 2017, Mineralogy and Petrology.

[38]  P. Kelemen,et al.  Experimental evidence for chemo-mechanical coupling during carbon mineralization in ultramafic rocks , 2017 .

[39]  P. Renforth,et al.  Assessing ocean alkalinity for carbon sequestration , 2017 .

[40]  E. Shock,et al.  Geochemical bioenergetics during low‐temperature serpentinization: An example from the Samail ophiolite, Sultanate of Oman , 2017 .

[41]  E. C. Sullivan,et al.  Wallula Basalt Pilot Demonstration Project: Post-injection Results and Conclusions , 2017 .

[42]  C. Malatesta,et al.  Lawsonite-bearing eclogite from a tectonic mélange in the Ligurian Alps: new constraints for the subduction plate-interface evolution , 2017, Geological Magazine.

[43]  Peter Psarras,et al.  Assessment of reasonable opportunities for direct air capture , 2017 .

[44]  S. Quegan,et al.  Simulating carbon capture by enhanced weathering with croplands: an overview of key processes highlighting areas of future model development , 2017, Biology Letters.

[45]  R. Freckleton,et al.  Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture , 2017, Biology Letters.

[46]  D. Beerling,et al.  Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering , 2017, Biology Letters.

[47]  F. Meysman,et al.  Negative CO2 emissions via enhanced silicate weathering in coastal environments , 2017, Biology Letters.

[48]  P. Renforth,et al.  Olivine Dissolution in Seawater: Implications for CO2 Sequestration through Enhanced Weathering in Coastal Environments , 2017, Environmental science & technology.

[49]  Sandra Ó. Snæbjörnsdóttir,et al.  The chemistry and saturation states of subsurface fluids during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland , 2017 .

[50]  A. T. Owen,et al.  Field Validation of Supercritical CO2 Reactivity with Basalts , 2017 .

[51]  Jiajie Li,et al.  Ultra-fine grinding and mechanical activation of mine waste rock using a planetary mill for mineral carbonation , 2017 .

[52]  A. Brandt,et al.  Carbon Dioxide Removal from Air using Seafloor Peridotite , 2016 .

[53]  K. Maher,et al.  Clumped-isotope thermometry of magnesium carbonates in ultramafic rocks , 2016 .

[54]  J. Matter,et al.  Controls on the stable isotope compositions of travertine from hyperalkaline springs in Oman: Insights from clumped isotope measurements , 2016 .

[55]  Xianghui Xiao,et al.  Experimental evidence of reaction‐induced fracturing during olivine carbonation , 2016 .

[56]  Sudarshan Martins Size–energy relationship in comminution, incorporating scaling laws and heat , 2016 .

[57]  M. Cathelineau,et al.  Paired stable isotopes (O, C) and clumped isotope thermometry of magnesite and silica veins in the New Caledonia Peridotite Nappe , 2016 .

[58]  Wallace S. Broecker,et al.  Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions , 2016, Science.

[59]  A. Templeton,et al.  Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine , 2016 .

[60]  I. Power,et al.  Accelerating Mineral Carbonation Using Carbonic Anhydrase. , 2016, Environmental science & technology.

[61]  I. Power,et al.  The impact of evolving mineral–water–gas interfacial areas on mineral–fluid reaction rates in unsaturated porous media , 2016 .

[62]  Mark R. Lomas,et al.  Enhanced weathering strategies for stabilizing climate and averting ocean acidification , 2015 .

[63]  B. Malvoisin Mass transfer in the oceanic lithosphere: Serpentinization is not isochemical , 2015 .

[64]  G. Dipple,et al.  Production of magnesium-rich solutions by acid leaching of chrysotile: A precursor to field-scale deployment of microbially enabled carbonate mineral precipitation , 2015 .

[65]  P. Renforth,et al.  The dissolution of olivine added to soil: Implications for enhanced weathering , 2015 .

[66]  S. Humphris,et al.  Applications and limitations of U–Th disequilibria systematics for determining ages of carbonate alteration minerals in peridotite , 2015 .

[67]  M. Blunt,et al.  Capillary trapping for geologic carbon dioxide storage - From pore scale physics to field scale implications , 2015 .

[68]  Ow,et al.  Drinking Water Contaminants – Standards and Regulations , 2015 .

[69]  P. Kelemen,et al.  Geochemistry and petrology of listvenite in the Samail ophiolite, Sultanate of Oman: Complete carbonation of peridotite during ophiolite emplacement , 2015 .

[70]  P. Kelemen,et al.  Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up , 2015, Proceedings of the National Academy of Sciences.

[71]  S. Gíslason,et al.  Solving the carbon-dioxide buoyancy challenge: The design and field testing of a dissolved CO2 injection system , 2015 .

[72]  B. Iversen,et al.  Optimized carbonation of magnesium silicate mineral for CO2 storage. , 2015, ACS applied materials & interfaces.

[73]  J. Rutqvist Fractured rock stress–permeability relationships from in situ data and effects of temperature and chemical–mechanical couplings , 2015 .

[74]  P. W. Scott,et al.  Time-temperature-transformation (TTT) diagram of caustic calcined magnesia , 2015 .

[75]  J. Wen,et al.  Investigation of milling energy input on structural variations of processed olivine powders for CO2 sequestration , 2015 .

[76]  S. Humphris,et al.  Fluids in the Crust. Experimental constraints on fluid-rock reactions during incipient serpentinization of harzburgite , 2014 .

[77]  J. Molson,et al.  New tools for stimulating dissolution and carbonation of ultramafic mining residues , 2014 .

[78]  M. Maroto-Valer,et al.  A review of mineral carbonation technologies to sequester CO2. , 2014, Chemical Society reviews.

[79]  B. Jamtveit,et al.  Reaction‐driven fracturing of porous rock , 2014 .

[80]  Christian Vogt,et al.  On self-potential data for estimating permeability in enhanced geothermal systems , 2014 .

[81]  J. Molson,et al.  Comparative study of five Québec ultramafic mining residues for use in direct ambient carbon dioxide mineral sequestration , 2014 .

[82]  I. Power,et al.  Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: Rates, controls and prospects for carbon neutral mining , 2014 .

[83]  Behnam Jafarpour,et al.  Inference of permeability heterogeneity from joint inversion of transient flow and temperature data , 2014 .

[84]  Faïçal Larachi,et al.  Emulation of ambient carbon dioxide diffusion and carbonation within nickel mining residues , 2014 .

[85]  B. Dlugogorski,et al.  Study of thermally conditioned and weak acid-treated serpentinites for mineralisation of carbon dioxide , 2014 .

[86]  E. Oelkers,et al.  Inter-mineral Mg isotope fractionation during hydrothermal ultramafic rock alteration - Implications for the global Mg-cycle , 2014 .

[87]  P. Renforth,et al.  Carbon dioxide efficiency of terrestrial enhanced weathering. , 2014, Environmental science & technology.

[88]  F. Neubauer,et al.  The origin and age of the metamorphic sole from the Rogozna Mts., Western Vardar Belt: New evidence for the one-ocean model for the Balkan ophiolites , 2014 .

[89]  Faïçal Larachi,et al.  Impact of temperature and oxygen availability on the dynamics of ambient CO2 mineral sequestration by nickel mining residues , 2014 .

[90]  B. Dlugogorski,et al.  Dehydroxylation of serpentine minerals: Implications for mineral carbonation , 2014 .

[91]  H. Austrheim,et al.  Fracture initiation during volume increasing reactions in rocks and applications for CO2 sequestration , 2014 .

[92]  J. Matter,et al.  Chemical and morphological changes during olivine carbonation for CO2 storage in the presence of NaCl and NaHCO3. , 2014, Physical chemistry chemical physics : PCCP.

[93]  S. Humphris,et al.  Carbonation rates of peridotite in the Samail Ophiolite, Sultanate of Oman, constrained through 14C dating and stable isotopes , 2014 .

[94]  M. Cathelineau,et al.  Dissolution–precipitation processes governing the carbonation and silicification of the serpentinite sole of the New Caledonia ophiolite , 2014, Contributions to Mineralogy and Petrology.

[95]  I. Daniel,et al.  Aluminum speeds up the hydrothermal alteration of olivine , 2013 .

[96]  M. Cathelineau,et al.  Syn-tectonic, meteoric water–derived carbonation of the New Caledonia peridotite nappe , 2013, Geology.

[97]  D. Manning,et al.  Carbonate precipitation in artificial soils produced from basaltic quarry fines and composts: An opportunity for passive carbon sequestration , 2013 .

[98]  J. Molson,et al.  Accurate and direct quantification of native brucite in serpentine ores—New methodology and implications for CO2 sequestration by mining residues , 2013 .

[99]  I. Power,et al.  Carbon sequestration via carbonic anhydrase facilitated magnesium carbonate precipitation , 2013 .

[100]  I. Power,et al.  Chrysotile dissolution rates: Implications for carbon sequestration , 2013 .

[101]  K. Lackner,et al.  Co-location of air capture, subseafloor CO2 sequestration, and energy production on the Kerguelen plateau. , 2013, Environmental science & technology.

[102]  P. Gouze,et al.  Incipient hydration of mantle lithosphere at ridges: A reactive-percolation experiment , 2013 .

[103]  I. Power,et al.  Serpentinite Carbonation for CO2 Sequestration , 2013 .

[104]  P. Renforth,et al.  Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification , 2013 .

[105]  D. Wolf-Gladrow,et al.  Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology , 2013 .

[106]  I. Power,et al.  Accelerated carbonation of brucite in mine tailings for carbon sequestration. , 2013, Environmental science & technology.

[107]  B. Dlugogorski,et al.  Thermal activation of antigorite for mineralization of CO2. , 2013, Environmental science & technology.

[108]  B. Jamtveit,et al.  Microstructure and porosity evolution during experimental carbonation of a natural peridotite , 2012 .

[109]  B. Jamtveit,et al.  Massive serpentinite carbonation at Linnajavri, N–Norway , 2012 .

[110]  B. Jamtveit,et al.  The interface-scale mechanism of reaction-induced fracturing during serpentinization , 2012 .

[111]  E. Shock,et al.  Reaction path modeling of enhanced in situ CO2 mineralization for carbon sequestration in the peridotite of the Samail Ophiolite, Sultanate of Oman , 2012 .

[112]  Shu-Yuan Pan,et al.  CO2 Capture by Accelerated Carbonation of Alkaline Wastes: A Review on Its Principles and Applications , 2012 .

[113]  P. Renforth,et al.  The potential of enhanced weathering in the UK , 2012 .

[114]  P. Kelemen,et al.  Reaction-driven cracking during retrograde metamorphism: Olivine hydration and carbonation , 2012 .

[115]  Pol Knops,et al.  Olivine Weathering in Soil, and Its Effects on Growth and Nutrient Uptake in Ryegrass (Lolium perenne L.): A Pot Experiment , 2012, PloS one.

[116]  Christian Vogt,et al.  Estimating the permeability distribution and its uncertainty at the EGS demonstration reservoir Soultz‐sous‐Forêts using the ensemble Kalman filter , 2012 .

[117]  J. Eiler,et al.  Coexisting serpentine and quartz from carbonate-bearing serpentinized peridotite in the Samail Ophiolite, Oman , 2012, Contributions to Mineralogy and Petrology.

[118]  R. Chiriac,et al.  Mineral replacement rate of olivine by chrysotile and brucite under high alkaline conditions , 2012 .

[119]  Pablo Gamazo,et al.  Reactive Transport Modeling of Natural Carbon Sequestration in Ultramafic Mine Tailings , 2012 .

[120]  A. Fedoročková,et al.  Dissolution of magnesium from calcined serpentinite in hydrochloric acid , 2012 .

[121]  X. Maldague,et al.  CO2-depleted warm air venting from chrysotile milling waste (Thetford Mines, Canada): Evidence for in-situ carbon capture from the atmosphere , 2012 .

[122]  J. Molson,et al.  CO2 Sequestration in Chrysotile Mining Residues—Implication of Watering and Passivation under Environmental Conditions , 2012 .

[123]  B. Dlugogorski,et al.  Optimization of antigorite heat pre-treatment via kinetic modeling of the dehydroxylation reaction for CO2 mineralization† , 2011 .

[124]  Zachary Frone,et al.  Temperature-At-Depth Maps for the Conterminous U. S. and Geothermal Resource Estimates , 2011 .

[125]  F. Larachi,et al.  Carbon sequestration kinetic and storage capacity of ultramafic mining waste. , 2011, Environmental science & technology.

[126]  Wankei Wan,et al.  Microbially mediated mineral carbonation: roles of phototrophy and heterotrophy. , 2011, Environmental science & technology.

[127]  I. Power,et al.  Subarctic weathering of mineral wastes provides a sink for atmospheric CO(2). , 2011, Environmental science & technology.

[128]  E. Gunnlaugsson,et al.  CarbFix: a CCS pilot project imitating and accelerating natural CO2 sequestration , 2011 .

[129]  B. Garcia,et al.  Influence of amorphous silica layer formation on the dissolution rate of olivine at 90 °C and elevated pCO2 , 2011 .

[130]  John Frederick Rudge,et al.  Rates and mechanisms of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO2 capture and storage , 2011 .

[131]  R. Edwards,et al.  U–Th systematics and 230Th ages of carbonate chimneys at the Lost City Hydrothermal Field , 2011 .

[132]  P Renforth,et al.  Silicate production and availability for mineral carbonation. , 2011, Environmental science & technology.

[133]  H. Austrheim,et al.  CO2 sequestration and extreme Mg depletion in serpentinized peridotite clasts from the Devonian Solund basin, SW-Norway , 2010 .

[134]  V. Atudorei,et al.  Isotopic disequilibrium during uptake of atmospheric CO2 into mine process waters: implications for CO2 sequestration. , 2010, Environmental science & technology.

[135]  Keywan Riahi,et al.  The emissions gap , 2010, Emissions Gap Report 2020.

[136]  I. Munz,et al.  Investigating dissolution of mechanically activated olivine for carbonation purposes , 2010 .

[137]  S. Ingebritsen,et al.  Hydrothermal heat discharge in the Cascade Range, northwestern United States , 2010 .

[138]  F. Larachi,et al.  Fixation of CO2 by chrysotile in low-pressure dry and moist carbonation: Ex-situ and in-situ characterizations , 2010 .

[139]  Jens Hartmann,et al.  Geoengineering potential of artificially enhanced silicate weathering of olivine , 2010, Proceedings of the National Academy of Sciences.

[140]  S. Ingebritsen,et al.  Permeability of the Continental Crust: Dynamic Variations Inferred from Seismicity and Metamorphism , 2010 .

[141]  Wallace S. Broecker,et al.  Mineral sequestration of carbon dioxide in basalt: A pre-injection overview of the CarbFix project , 2010 .

[142]  John Frederick Rudge,et al.  A simple model of reaction-induced cracking applied to serpentinization and carbonation of peridotite , 2010, Earth and Planetary Science Letters.

[143]  G. Dipple,et al.  Quantifying carbon fixation in trace minerals from processed kimberlite: A comparative study of quantitative methods using X-ray powder diffraction data with applications to the Diavik Diamond Mine, Northwest Territories, Canada , 2009 .

[144]  M. Velbel Dissolution of olivine during natural weathering , 2009 .

[145]  D. Manning,et al.  Carbonate precipitation in artificial soils as a sink for atmospheric carbon dioxide , 2009 .

[146]  G. Ruggieri,et al.  Enhanced CO2-mineral sequestration by cyclic hydraulic fracturing and Si-rich fluid infiltration into serpentinites at Malentrata (Tuscany, Italy) , 2009 .

[147]  Hülya Alçiçek Late Miocene nonmarine sedimentation and formation of magnesites in the Acıgöl Basin, southwestern Anatolia, Turkey , 2009 .

[148]  Woong Lee,et al.  Effect of grinding aids on the kinetics of fine grinding energy consumed of calcite powders by a stirred ball mill , 2009 .

[149]  E. Petrakis,et al.  Surface area production during grinding , 2009 .

[150]  Baoqing Li,et al.  Electrolysis and heat pretreatment methods to promote CO2 sequestration by mineral carbonation , 2009 .

[151]  P. Gouze,et al.  Experimental study of carbon sequestration reactions controlled by the percolation of CO2-rich brine through peridotites. , 2009, Environmental science & technology.

[152]  P. Baláž,et al.  Structural changes in olivine (Mg, Fe)2SiO4 mechanically activated in high-energy mills , 2008 .

[153]  I. Power,et al.  The hydromagnesite playas of Atlin, British Columbia, Canada: A biogeochemical model for CO2 sequestration , 2008 .

[154]  Desmond Tromans,et al.  Mineral comminution: Energy efficiency considerations , 2008 .

[155]  B. Jamtveit,et al.  Reaction enhanced permeability during retrogressive metamorphism , 2008 .

[156]  I. Power,et al.  Geochemical Transactions BioMed Central , 2007 .

[157]  S. Nasir,et al.  Mineralogical and geochemical characterization of listwaenite from the Semail Ophiolite, Oman , 2007 .

[158]  H. Paulick,et al.  Hydrothermal alteration and microbial sulfate reduction in peridotite and gabbro exposed by detachment faulting at the Mid‐Atlantic Ridge, 15°20′N (ODP Leg 209): A sulfur and oxygen isotope study , 2007 .

[159]  Geert-Jan Witkamp,et al.  Cost evaluation of CO2 sequestration by aqueous mineral carbonation , 2007 .

[160]  D. Lockner,et al.  Comparative Deformation Behavior of Minerals in Serpentinized Ultramafic Rock: Application to the Slab-Mantle Interface in Subduction Zones , 2007 .

[161]  A. I. Karayiğit,et al.  The genesis of the carbonatized and silicified ultramafics known as listvenites: a case study from the Mihalıççık region (Eskişehir), NW Turkey , 2006 .

[162]  G. Dipple,et al.  Verifying and quantifying carbon Þ xation in minerals from serpentine-rich mine tailings using the Rietveld method with X-ray powder diffraction data , 2006 .

[163]  D. Kelley,et al.  Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field , 2006 .

[164]  R. A. Kleiv,et al.  Mechanical activation of olivine , 2006 .

[165]  R. Schuiling,et al.  Enhanced Weathering: An Effective and Cheap Tool to Sequester Co2 , 2006 .

[166]  M. Mercedes Maroto-Valer,et al.  Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration , 2005 .

[167]  P. T. Laney,et al.  Estimating Well Costs for Enhanced Geothermal System Applications , 2005 .

[168]  B. Dewandel,et al.  A conceptual hydrogeological model of ophiolite hard-rock aquifers in Oman based on a multiscale and a multidisciplinary approach , 2005 .

[169]  G. Dipple,et al.  CARBONATED SERPENTINITE (LISTWANITE) AT ATLIN, BRITISH COLUMBIA: A GEOLOGICAL ANALOGUE TO CARBON DIOXIDE SEQUESTRATION , 2005 .

[170]  Eric Forssberg,et al.  Dry fine comminution in a stirred media mill—MaxxMill® , 2004 .

[171]  F. Preusser,et al.  Eustatic and climatic controls on the development of the Wahiba Sand Sea, Sultanate of Oman , 2004 .

[172]  H. Béarat,et al.  Exploration of the role of heat activation in enhancing serpentine carbon sequestration reactions. , 2004, Environmental science & technology.

[173]  Charles Q. Jia,et al.  Critical evaluation of coupling particle size distribution with the shrinking core model , 2004 .

[174]  D. Lockner,et al.  Crystallographic controls on the frictional behavior of dry and water-saturated sheet structure minerals , 2004 .

[175]  Yousif K. Kharaka,et al.  A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling , 2004 .

[176]  D. Blackwell,et al.  Thermal Constraints on Earthquake Depths in California , 2003 .

[177]  S. Gíslason,et al.  Mechanism, rates, and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature , 2003 .

[178]  D. Butterfield,et al.  30,000 Years of Hydrothermal Activity at the Lost City Vent Field , 2003, Science.

[179]  J. Ogden CONCEPTUAL DESIGN OF OPTIMIZED FOSSIL ENERGY SYSTEMS WITH CAPTURE AND SEQUESTRATION OF CARBON DIOXIDE , 2003 .

[180]  Luigi Marini,et al.  Irreversible water–rock mass transfer accompanying the generation of the neutral, Mg–HCO3 and high-pH, Ca–OH spring waters of the Genova province, Italy , 2002 .

[181]  A. Al-Lazki,et al.  A crustal transect across the Oman Mountains on the eastern margin of Arabia , 2002, GeoArabia.

[182]  Deborah S. Kelley,et al.  An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N , 2001, Nature.

[183]  S. Brantley,et al.  Surface area and porosity of primary silicate minerals , 2000 .

[184]  D. Lockner,et al.  The effect of mineral bond strength and adsorbed water on fault gouge frictional strength , 2000 .

[185]  M. Russell,et al.  Genesis of Vein Stockwork and Sedimentary Magnesite and Hydromagnesite Deposits in the Ultramafic Terranes of Southwestern Turkey: A Stable Isotope Study , 2000 .

[186]  S. Ingebritsen,et al.  Permeability of the continental crust: Implications of geothermal data and metamorphic systems , 1999 .

[187]  C. Halls,et al.  Listvenite and related rocks: perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland , 1995 .

[188]  T. J. Wolery,et al.  EQ3/6, a software package for geochemical modeling of aqueous systems: Package overview and installation guide (Version 7.0) , 1992 .

[189]  D. S. O'Hanley Solution to the volume problem in serpentinization , 1992 .

[190]  M. Russell,et al.  A stable isotope study of the magnesite deposits associated with the alpine-type ultramafic rocks of Yugoslavia , 1991 .

[191]  W. Pohl Genesis of magnesite deposits — models and trends , 1990 .

[192]  W. Seifritz,et al.  CO2 disposal by means of silicates , 1990, Nature.

[193]  I. Clark,et al.  Paleoclimatic Reconstruction in Northern Oman Based on Carbonates from Hyperalkaline Groundwaters , 1990, Quaternary Research.

[194]  W. Fyfe,et al.  Rate of serpentinization in seafloor environments , 1985 .

[195]  J. R. O'neil,et al.  Calcium-magnesium carbonate solid solutions from Holocene conglomerate cements and travertines in the Coast Range of California , 1971 .

[196]  R. Coleman,et al.  A Chemical Study of Serpentinization—Burro Mountain, California , 1971 .

[197]  J. R. O'neil,et al.  The Relationship between Fluids in Some Fresh Alpine-Type Ultramafics and Possible Modern Serpentinization, Western United States , 1969 .

[198]  V. Lamarche,et al.  Geochemical Evidence of Present-Day Serpentinization , 1967, Science.

[199]  L. F. Moody Friction Factors for Pipe Flow , 1944, Journal of Fluids Engineering.

[200]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[201]  P. Bradshaw,et al.  Targeting Highly Reactive Labile Magnesium in Ultramafic Tailings for Greenhouse-Gas Offsets and Potential Tailings Stabilization at the Baptiste Deposit, Central British Columbia (NTS 093K/13, 14) , 2018 .

[202]  Uta Dresdner Co2 In Seawater Equilibrium Kinetics Isotopes , 2016 .

[203]  I. Power,et al.  Influence of surface passivation and water content on mineral reactions in unsaturated porous media: Implications for brucite carbonation and CO2 sequestration , 2015 .

[204]  A. Park,et al.  Carbonation of Silicate Minerals and Industrial Wastes and Their Potential Use as Sustainable Construction Materials , 2015 .

[205]  N. Mitina,et al.  Influence of Heat Treatment Mode of Various Magnesia Rocks on their Properties , 2015 .

[206]  Christopher F. Brown,et al.  Injection and Monitoring at the Wallula Basalt Pilot Project , 2014 .

[207]  F. Larachi,et al.  Biomass torrefaction and CO2 capture using mining wastes - A new approach for reducing greenhouse gas emissions of co-firing plants , 2014 .

[208]  M. Styles,et al.  Near-surface diagenesis of ophiolite-derived conglomerates of the Barzaman Formation, United Arab Emirates: a natural analogue for permanent CO2 sequestration via mineral carbonation of ultramafic rocks , 2014 .

[209]  J. Molson,et al.  Dynamics of carbon dioxide uptake in chrysotile mining residues – Effect of mineralogy and liquid saturation , 2013 .

[210]  I. Power,et al.  Carbon Mineralization: From Natural Analogues to Engineered Systems , 2013 .

[211]  David L. Parkhurst,et al.  Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations , 2013 .

[212]  Lisa Shevenell,et al.  The Estimated Costs as a Function of Depth of Geothermal Development Wells Drilled in Nevada , 2012 .

[213]  J. Gravel,et al.  Role of steam, hydrogen and pretreatment in chrysotile gas-solid carbonation: Opportunities for pre-combustion CO2 capture , 2012 .

[214]  Wallace S. Broecker,et al.  The CarbFix Pilot Project–Storing carbon dioxide in basalt , 2011 .

[215]  P. Kelemen,et al.  Composition and Genesis of Depleted Mantle Peridotites from the Wadi Tayin Massif, Oman Ophiolite; Major and Trace Element Geochemistry, and Os Isotope and PGE Systematics , 2010 .

[216]  I. Power,et al.  Bioleaching of ultramafic tailings by acidithiobacillus spp. for CO2 sequestration. , 2010, Environmental science & technology.

[217]  K. Eder [Magnesium compounds]. , 2009, Pharmazie in unserer Zeit.

[218]  R. G. Anderson,et al.  Carbon Dioxide Fixation within Mine Wastes of Ultramafic-Hosted Ore Deposits: Examples from the Clinton Creek and Cassiar Chrysotile Deposits, Canada , 2009 .

[219]  B. Jamtveit,et al.  Reaction induced fracturing during replacement processes , 2009 .

[220]  C. Graves,et al.  Mapping the mineral resource base for mineral carbon-dioxide sequestration in the conterminous United States , 2009 .

[221]  R. Thomas,et al.  The geology and geophysics of the United Arab Emirates : Volume 2, Geology , 2006 .

[222]  Chad Augustine,et al.  A COMPARISON OF GEOTHERMAL WITH OIL AND GAS WELL DRILLING COSTS , 2006 .

[223]  M. Styles,et al.  The geology and geophysics of the United Arab Emirates. Volume 1, Executive summary , 2006 .

[224]  Ton Wildenborg,et al.  Underground geological storage , 2005 .

[225]  A. Wilde,et al.  Preliminary study of Cenozoic hydrothermal alteration and platinum deposition in the Oman Ophiolite , 2002 .

[226]  M. Lilley,et al.  An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N. , 2001, Nature.

[227]  S. Brantley,et al.  Chemical weathering rates of pyroxenes and amphiboles , 1995 .

[228]  Klaus S. Lackner,et al.  Carbon dioxide disposal in carbonate minerals , 1995 .

[229]  W. Mooney,et al.  A geologic interpretation of seismic-refraction results in northeastern California , 1987 .

[230]  G. Stanger Silicified serpentinite in the Semail nappe of Oman , 1985 .

[231]  J. Fontes,et al.  Les sources thermales de Prony (Nouvelle-Calédonie) et leurs précipités chimiques. Exemple de formation de brucite primaire , 1985 .

[232]  C. Neal,et al.  Past And Present Serpentinisation of Ultramafic Rocks; An Example from the Semail Ophiolite Nappe of Northern Oman , 1985 .

[233]  J. R. O'neil,et al.  Present day serpentinization in New Caledonia, Oman and Yugoslavia , 1978 .