On the generation of circuits and minimal forbidden sets
暂无分享,去创建一个
[1] Egon Balas,et al. PROJECT SCHEDULING WITH RESOURCE CONSTRAINTS. , 1968 .
[2] Eugene L. Lawler,et al. Generating all Maximal Independent Sets: NP-Hardness and Polynomial-Time Algorithms , 1980, SIAM J. Comput..
[3] Mihalis Yannakakis,et al. On Generating All Maximal Independent Sets , 1988, Inf. Process. Lett..
[4] Martin Bartusch. An algorithm for generating all maximal independent subsets of posets , 2005, Computing.
[5] Ramón Alvarez-Valdés Olaguíbel,et al. The project scheduling polyhedron: Dimension, facets and lifting theorems , 1993 .
[6] Philip M. Wolfe,et al. Multiproject Scheduling with Limited Resources: A Zero-One Programming Approach , 1969 .
[7] Frederik Stork,et al. Stochastic resource-constrained project scheduling , 2001 .
[8] Franz Josef Radermacher,et al. Preselective strategies for the optimization of stochastic project networks under resource constraints , 1983, Networks.
[9] J. Scott Provan,et al. The Complexity of Counting Cuts and of Computing the Probability that a Graph is Connected , 1983, SIAM J. Comput..
[10] Rolf H. Möhring,et al. Scheduling project networks with resource constraints and time windows , 1988 .
[11] A. Brandstädt,et al. Graph Classes: A Survey , 1987 .
[12] Leslie G. Valiant,et al. The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..
[13] M. Yannakakis. The Complexity of the Partial Order Dimension Problem , 1982 .
[14] Rainer Kolisch,et al. PSPLIB - a project scheduling problem library , 1996 .
[15] F. Radermacher. Scheduling of project networks , 1985 .
[16] E. Beale,et al. Applications of Mathematical Programming Techniques. , 1971 .
[17] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[18] Rainer Kolisch,et al. PSPLIB - A project scheduling problem library: OR Software - ORSEP Operations Research Software Exchange Program , 1997 .
[19] P. Hammer,et al. Aggregation of inequalities in integer programming. , 1975 .
[20] Vladimir Gurvich,et al. Dual-Bounded Generating Problems: All Minimal Integer Solutions for a Monotone System of Linear Inequalities , 2002, SIAM J. Comput..
[21] Leslie G. Valiant,et al. The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..
[22] P. Hammer,et al. Dual subimplicants of positive Boolean functions , 1998 .
[23] Rolf H. Möhring,et al. Scheduling with AND/OR Precedence Constraints , 2004, SIAM J. Comput..
[24] R. Möhring. Algorithmic Aspects of Comparability Graphs and Interval Graphs , 1985 .
[25] Martin Bartusch,et al. Optimierung von Netzplänen mit Anordnungsbeziehungen bei knappen Betriebsmitteln , 1983 .
[26] Franz Josef Radermacher,et al. Algorithmic approaches to preselective strategies for stochastic scheduling problems , 1983, Networks.