Automated monitoring of high-temperature volcanic features: from high-spatial to very-high-temporal resolution

Abstract Developments in spaceborne Earth Observation (EO) sensor technology over the last decade, combined with well-tested physical models and multispectral data-processing techniques developed from the early 1980s, have paved the way to the global monitoring of volcanoes by sensors of metric, decametric, kilometric and multi-kilometric spatial resolution. Such variable geometries provide for revisit intervals ranging from about monthly – at high-spatial resolution in Low-Earth Orbit – to less than 5 min – at low-spatial resolution, from geostationary platforms. There are currently about 20 spacecrafts available for carrying out 24/7 quantitative observations of volcanic unrest, at all resolutions and as close as possible to real-time. We show some successful examples of synergetic EO on volcanoes on three continents from 10 different payloads, automatically processed with three, end-to-end unsupervised procedures, on eight major eruptions and a lava lake between 2006 and 2014.

[1]  L. Glaze,et al.  Measuring thermal budgets of active volcanoes by satellite remote sensing , 1989, Nature.

[2]  Stephen Self,et al.  The 16 September 1986 eruption of Lascar volcano, north Chile: Satellite investigations , 1989 .

[3]  D. Coppola,et al.  Lava discharge rate and effusive pattern at Piton de la Fournaise from MODIS data , 2009 .

[4]  David C. Pieri,et al.  Thermal radiance observations of an active lava flow during the June 1984 eruption of Mount Etna , 1990 .

[5]  D. Rothery,et al.  Using the Landsat Thematic Mapper to detect and monitor active volcanoes: An example from Lascar volcano, northern Chile , 1987 .

[6]  A. Harris,et al.  Automated volcanic eruption detection using MODIS , 2001 .

[7]  D. Rothery,et al.  The 1993 Lascar pyroclastic flow imaged by JERS-1 , 1996 .

[8]  Clive Oppenheimer,et al.  Mass flux measurements at active lava lakes: Implications for magma recycling , 1999 .

[9]  Barbara Hirn,et al.  Spaceborne Monitoring 2000–2005 of the Pu'u `O'o-Kupaianaha (Hawaii) Eruption by Synergetic Merge of Multispectral Payloads ASTER and MODIS , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Peter I. Miller,et al.  Low-cost volcano surveillance from space: case studies from Etna, Krafla, Cerro Negro, Fogo, Lascar and Erebus , 1997 .

[11]  C. Oppenheimer,et al.  Remote sensing of heat, lava and fumarole emissions from Erta 'Ale volcano, Ethiopia , 1997 .

[12]  Martin J. Wooster,et al.  Thermal monitoring of Lascar Volcano, Chile, using infrared data from the along-track scanning radiometer: a 1992–1995 time series , 1997 .

[13]  Giovanni Laneve,et al.  Quality assessment of the fire hazard forecast based on a fire potential index for the Mediterranean area by using a MSG/SEVIRI based fire detection system , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[14]  Paul G. Lucey,et al.  Radiative temperature measurements at Kupaianaha Lava Lake, Kilauea Volcano, Hawaii , 1993 .

[15]  A. Harris,et al.  Evolution of lava flow-fields at Mount Etna, 27–28 October 1999, observed by Landsat 7 ETM+ , 2001 .

[16]  A. Harris,et al.  Temporal trends in lava dome extrusion at Santiaguito 1922–2000 , 2002, Bulletin of Volcanology.

[17]  Barbara Hirn,et al.  Synergetic exploitation of meteorological geostationary payloads «SEVIRI» and «JAMI» for quantitative, real-time, global volcano monitoring , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[18]  Barbara Hirn,et al.  Combined Use of SEVIRI and MODIS for Detecting, Measuring, and Monitoring Active Lava Flows at Erupting Volcanoes , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Martin J. Wooster,et al.  Long‐term infrared surveillance of Lascar Volcano: Contrasting activity cycles and cooling pyroclastics , 2001 .

[20]  Barberi F.,et al.  Volcanic Hazards , 1982 .

[21]  D. Rothery,et al.  Effusion rate trends at Etna and Krafla and their implications for eruptive mechanisms , 2000 .

[22]  Giovanni Laneve,et al.  SEVIRI Onboard Meteosat Second Generation, and the Quantitative Monitoring of Effusive Volcanoes in Europe and Africa , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[23]  F. Massin,et al.  The April 2007 eruption and the Dolomieu crater collapse, two major events at Piton de la Fournaise (La Réunion Island, Indian Ocean) , 2009 .

[24]  Rosalind J Wright,et al.  Cooling mechanisms and an approximate thermal budget for the 1991–1993 Mount Etna lava flow , 1997 .

[25]  L. Keszthelyi,et al.  Calculation of lava effusion rates from Landsat TM data , 1998 .

[26]  M. Wooster,et al.  Satellite thermal analyses of lava dome effusion rates at Unzen Volcano, Japan , 1998 .

[27]  Keith A. Horton,et al.  Distribution of thermal areas on an active lava flow field: Landsat observations of Kilauea, Hawaii, July 1991 , 1994 .

[28]  Peter J. Mouginis-Mark,et al.  Temperature of an active lava channel from spectral measurements, Kilauea Volcano, Hawaii , 1994 .

[29]  Robert Wright,et al.  Remote monitoring of Mount Erebus Volcano, antarctica, using Polar Orbiters : Progress and Prospects , 1999 .

[30]  Andrew J. L. Harris,et al.  A chronology of the 1991 to 1993 Mount Etna eruption using advanced very high resolution radiometer data: Implications for real‐time thermal volcano monitoring , 1997 .

[31]  Nicolas Theys,et al.  Operational Integration of Spaceborne Measurements of Lava Discharge Rates and Sulfur Dioxide Concentrations for Global Volcano Monitoring , 2014 .

[32]  Alfred J Prata,et al.  Eyjafjallajökull volcanic ash concentrations determined using Spin Enhanced Visible and Infrared Imager measurements , 2012 .

[33]  C. Oppenheimer,et al.  Implications of longeval lava lakes for geomorphological and plutonic processes at Erta 'Ale volcano, Afar , 1998 .

[34]  Barbara Hirn,et al.  Southern Italy Burn Scar Mapping by MYME2 Procedure using IRS-P6 LISS3 , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[35]  Martin J. Wooster,et al.  Landsat infrared analysis of fumarole activity at Unzen volcano : time-series comparison with gas and magma fluxes , 1999 .

[36]  D. Rothery,et al.  Documenting surface magmatic activity at Mount Etna using ATSR remote sensing , 2001 .

[37]  S. Baloga,et al.  Eruption rate, area, and length relationships for some Hawaiian lava flows , 1986 .

[38]  Antonio CostaGiovanni Macedonio Numerical simulation of lava flows based on depth-averaged equations , 2005 .

[39]  Teodosio Lacava,et al.  Thermal Monitoring of Eyjafjöll Volcano Eruptions by Means of Infrared MODIS Data , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[40]  Giovanni Macedonio,et al.  Numerical simulation of lava flows based on depth‐averaged equations , 2005 .

[41]  A. Harris,et al.  The evolution of an active silicic lava flow field: an ETM+ perspective , 2004 .

[42]  E. P. McClam,et al.  A Method for Satellite Identification of Surface Temperature Fields of Subpixel Resolution , 2002 .

[43]  Andrew J. L. Harris,et al.  Satellite observations of the April 1993 eruption of Lascar volcano , 1998 .

[44]  C. Kilburn,et al.  Lava Flows and Flow Fields , 2000 .

[45]  Andrew J. L. Harris,et al.  Automated thresholding of active lavas using AVHRR data , 1995 .

[46]  David C. Pieri,et al.  Improved remote sensing estimates of lava flow cooling: A case study of the 1991–1993 Mount Etna eruption , 2000 .

[47]  A. Harris,et al.  Effusion rate controls on lava flow length and the role of heat loss: a review , 2009 .

[48]  M. Urai Volcano monitoring with Landsat TM short-wave infrared bands: The 1990-1994 eruption of Unzen Volcano, Japan , 2000 .

[49]  M. Ripepe,et al.  Hot-spot detection and characterization of strombolian activity from MODIS infrared data , 2014 .

[50]  Philippe Gouze,et al.  Thermal survey of Mount Etna Volcano from space , 1992 .

[51]  David A. Rothery,et al.  The 1992 Etna lava flow imaged by Landsat TM , 1992 .

[52]  Fabrizio Ferrucci,et al.  A Real-Time, Space Borne Volcano Observatory to Support Decision Making during Eruptive Crises: European Volcano Observatory Space Services , 2013, 2013 UKSim 15th International Conference on Computer Modelling and Simulation.

[53]  Clive Oppenheimer,et al.  Infrared image analysis of volcanic thermal features: Láscar Volcano, Chile, 1984–1992 , 1993 .

[54]  J. Dozier A method for satellite identification of surface temperature fields of subpixel resolution , 1981 .

[55]  M. Wooster,et al.  Exogenous and endogenous growth of the Unzen lava dome examined by satellite infrared image analysis , 2002 .

[56]  F. Ferrucci,et al.  Estimation of ash injection in the atmosphere by basaltic volcanic plumes: The case of the Eyjafjallajökull 2010 eruption , 2011 .

[57]  H. Gaonac'h,et al.  Thermal infrared satellite measurements of volcanic activity at Stromboli and Vulcano , 1994 .

[58]  A. Harris,et al.  Chronology and complex volcanic processes during the 2002-2003 flank eruption at Stromboli volcano (Italy) reconstructed from direct observations and surveys with a handheld thermal camera , 2005, Journal of Geophysical Research: Solid Earth.

[59]  Michael Abrams,et al.  Monitoring Colima Volcano, Mexico, using satellite data , 1991 .

[60]  D. Rothery,et al.  Volcano monitoring using short wavelength infrared data from satellites , 1988 .

[61]  Andrew J. L. Harris,et al.  VAST: a program to locate and analyse volcanic thermal anomalies automatically from remotely sensed data , 1997 .

[62]  Barbara Hirn,et al.  MODIS Borne Analysis of Long Series of Radiant Fluxes at Active Lava Lakes , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[63]  A. Harris,et al.  Improved identification of volcanic features using Landsat 7 ETM , 2001 .

[64]  B.R. Hirn,et al.  Automated, multi-payload, high-resolution temperature mapping and instant lava effusion rate determination at erupting volcanoes , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[65]  Clive Oppenheimer,et al.  Lava flow cooling estimated from Landsat Thematic Mapper infrared data: The Lonquimay Eruption (Chile, 1989) , 1991 .