Light Absorption and Recycling in Hybrid Metal Halide Perovskite Photovoltaic Devices

The production of highly efficient single‐ and multijunction metal halide perovskite (MHP) solar cells requires careful optimization of the optical and electrical properties of these devices. Here, precise control of CH3NH3PbI3 perovskite layers is demonstrated in solar cell devices through the use of dual source coevaporation. Light absorption and device performance are tracked for incorporated MHP films ranging from ≈67 nm to ≈1.4 µm thickness and transfer‐matrix optical modeling is utilized to quantify optical losses that arise from interference effects. Based on these results, a device with 19.2% steady‐state power conversion efficiency is achieved through incorporation of a perovskite film with near‐optimum predicted thickness (≈709 nm). Significantly, a clear signature of photon reabsorption is observed in perovskite films that have the same thickness (≈709 nm) as in the optimized device. Despite the positive effect of photon recycling associated with photon reabsorption, devices with thicker (>750 nm) MHP layers exhibit poor performance owing to competing nonradiative charge recombination in a “dead‐volume” of MHP. Overall, these findings demonstrate the need for fine control over MHP thickness to achieve the highest efficiency cells, and accurate consideration of photon reabsorption, optical interference, and charge transport properties.

[1]  Xiaodang Zhang,et al.  Light Management in Monolithic Perovskite/Silicon Tandem Solar Cells , 2020, Solar RRL.

[2]  J. Martínez‐Pastor,et al.  Short Photoluminescence Lifetimes in Vacuum-Deposited CH3NH3PbI3 Perovskite Thin Films as a Result of Fast Diffusion of Photogenerated Charge Carriers. , 2019, The journal of physical chemistry letters.

[3]  Jay B. Patel,et al.  Growth modes and quantum confinement in ultrathin vapour-deposited MAPbI3 films. , 2019, Nanoscale.

[4]  Christoph J. Brabec,et al.  Impurity Tracking Enables Enhanced Control and Reproducibility of Hybrid Perovskite Vapor Deposition , 2019, ACS applied materials & interfaces.

[5]  Wei Huang,et al.  Two‐Terminal Perovskites Tandem Solar Cells: Recent Advances and Perspectives , 2019, Solar RRL.

[6]  V. Bulović,et al.  Scalable Deposition Methods for Large‐area Production of Perovskite Thin Films , 2019, ENERGY & ENVIRONMENTAL MATERIALS.

[7]  Yiliang Wu,et al.  30% Enhancement of Efficiency in Layered 2D Perovskites Absorbers by Employing Homo‐Tandem Structures , 2019, Solar RRL.

[8]  Yang Yang,et al.  Supersymmetric laser arrays , 2019, Nature Photonics.

[9]  A. Jen,et al.  Reducing Surface Recombination Velocities at the Electrical Contacts Will Improve Perovskite Photovoltaics , 2018, ACS Energy Letters.

[10]  T. Kirchartz,et al.  Research Update: Recombination and open-circuit voltage in lead-halide perovskites , 2018, APL Materials.

[11]  Thomas Kirchartz,et al.  What Makes a Good Solar Cell? , 2018 .

[12]  L. Qiu,et al.  Gas-solid reaction based over one-micrometer thick stable perovskite films for efficient solar cells and modules , 2018, Nature Communications.

[13]  Zhongxin Zhou,et al.  Solvent Engineering to Balance Light Absorbance and Transmittance in Perovskite for Tandem Solar Cells , 2018, Solar RRL.

[14]  Yiliang Wu,et al.  A Step-by-Step Optimization of the c-Si Bottom Cell in Monolithic Perovskite/c-Si Tandem Devices , 2018, Solar RRL.

[15]  M. Debucquoy,et al.  Perovskite–silicon tandem solar modules with optimised light harvesting , 2018 .

[16]  Juan J. Diaz Leon,et al.  Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency , 2018, Nature Materials.

[17]  H. Bolink,et al.  Vacuum Deposited Triple‐Cation Mixed‐Halide Perovskite Solar Cells , 2018 .

[18]  Jia Zhu,et al.  CsSnI3 Solar Cells via an Evaporation‐Assisted Solution Method , 2018 .

[19]  Kai Zhu,et al.  Scalable fabrication of perovskite solar cells , 2018 .

[20]  Eli Yablonovitch,et al.  Fundamental Efficiency Limit of Lead Iodide Perovskite Solar Cells , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[21]  Jason P. Hallett,et al.  Green and Sustainable Solvents in Chemical Processes. , 2018, Chemical reviews.

[22]  Jay B. Patel,et al.  Photocurrent Spectroscopy of Perovskite Solar Cells Over a Wide Temperature Range from 15 to 350 K. , 2018, The journal of physical chemistry letters.

[23]  Y. Qi,et al.  Fully Solution‐Processed TCO‐Free Semitransparent Perovskite Solar Cells for Tandem and Flexible Applications , 2018 .

[24]  Jay B. Patel,et al.  Bimolecular recombination in methylammonium lead triiodide perovskite is an inverse absorption process , 2018, Nature Communications.

[25]  Henry J. Snaith,et al.  Metal halide perovskite tandem and multiple-junction photovoltaics , 2017 .

[26]  Henk J. Bolink,et al.  Vapor-Deposited Perovskites: The Route to High-Performance Solar Cell Production? , 2017 .

[27]  Maximilian T. Hörantner,et al.  The Potential of Multijunction Perovskite Solar Cells , 2017 .

[28]  High‐Efficiency Organic Tandem Solar Cells With Effective Transition Metal Chelates Interconnecting Layer , 2017 .

[29]  Jay B. Patel,et al.  Photon Reabsorption Masks Intrinsic Bimolecular Charge-Carrier Recombination in CH3NH3PbI3 Perovskite. , 2017, Nano letters.

[30]  Guangda Niu,et al.  Inorganic CsPbI3 Perovskite‐Based Solar Cells: A Choice for a Tandem Device , 2017 .

[31]  L. Herz Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits , 2017 .

[32]  Huanping Zhou,et al.  Recent Development of Organic–Inorganic Perovskite‐Based Tandem Solar Cells , 2017 .

[33]  Jay B. Patel,et al.  Influence of Interface Morphology on Hysteresis in Vapor‐Deposited Perovskite Solar Cells , 2017 .

[34]  Henk J. Bolink,et al.  Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers , 2016 .

[35]  Thomas Kirchartz,et al.  Impact of Photon Recycling on the Open-Circuit Voltage of Metal Halide Perovskite Solar Cells , 2016 .

[36]  Rebecca A. Belisle,et al.  Perovskite-perovskite tandem photovoltaics with optimized band gaps , 2016, Science.

[37]  Laura M. Herz,et al.  Charge-Carrier Dynamics in Organic-Inorganic Metal Halide Perovskites. , 2016, Annual review of physical chemistry.

[38]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[39]  Jay B. Patel,et al.  Formation Dynamics of CH3NH3PbI3 Perovskite Following Two-Step Layer Deposition. , 2016, The journal of physical chemistry letters.

[40]  C. Ballif,et al.  Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm(2). , 2016, The journal of physical chemistry letters.

[41]  Michael B. Johnston,et al.  Colour-selective photodiodes , 2015, Nature Photonics.

[42]  Paul L. Burn,et al.  Filterless narrowband visible photodetectors , 2015, Nature Photonics.

[43]  Wei Zhang,et al.  Optical properties and limiting photocurrent of thin-film perovskite solar cells , 2015 .

[44]  Paul L. Burn,et al.  Electro-optics of perovskite solar cells , 2014, Nature Photonics.

[45]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[46]  Sandeep Kumar Pathak,et al.  Lead-free organic–inorganic tin halide perovskites for photovoltaic applications , 2014 .

[47]  Henk J. Bolink,et al.  Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm , 2014 .

[48]  Paul L. Burn,et al.  Quantum Efficiency of Organic Solar Cells: Electro-Optical Cavity Considerations , 2014 .

[49]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[50]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[51]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[52]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[53]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[54]  Eric T. Hoke,et al.  Accounting for Interference, Scattering, and Electrode Absorption to Make Accurate Internal Quantum Efficiency Measurements in Organic and Other Thin Solar Cells , 2010, Advanced materials.

[55]  I. P. Studenyak,et al.  On the Urbach rule in non-crystalline solids , 2009 .

[56]  Michael Grätzel,et al.  Light intensity, temperature, and thickness dependence of the open-circuit voltage in solid-state dye-sensitized solar cells , 2006 .

[57]  J. Nelson The physics of solar cells , 2003 .

[58]  Hans J. Queisser,et al.  On the thickness dependence of open circuit voltages of p-n junction solar cells , 1993 .

[59]  G. Cody Urbach edge of crystalline and amorphous silicon : a personal review , 1992 .

[60]  E. Yablonovitch,et al.  Meaning of the photovoltaic band gap for amorphous semiconductors , 1982 .

[61]  A. D. Vos,et al.  Detailed balance limit of the efficiency of tandem solar cells , 1980 .