The Role of Type VI Secretion System Effectors in Target Cell Lysis and Subsequent Horizontal Gene Transfer.

[1]  Jeff Hasty,et al.  Inter-species population dynamics enhance microbial horizontal gene transfer and spread of antibiotic resistance , 2017, eLife.

[2]  H. Stahlberg,et al.  Cryo-EM structure of the extended type VI secretion system sheath–tube complex , 2017, Nature Microbiology.

[3]  M. Horn,et al.  In situ architecture, function, and evolution of a contractile injection system , 2017, Science.

[4]  C. Lostroh,et al.  Succinate, iron chelation, and monovalent cations affect the transformation efficiency of Acinetobacter baylyi ATCC 33305 during growth in complex media. , 2017, Canadian journal of microbiology.

[5]  Marek Basler,et al.  The type VI secretion system sheath assembles at the end distal from the membrane anchor , 2017, Nature Communications.

[6]  J. Veening,et al.  Interbacterial predation as a strategy for DNA acquisition in naturally competent bacteria , 2017, Nature Reviews Microbiology.

[7]  Marek Basler,et al.  Francisella requires dynamic type VI secretion system and ClpB to deliver effectors for phagosomal escape , 2017, Nature Communications.

[8]  Y. Boucher,et al.  Sequential displacement of Type VI Secretion System effector genes leads to evolution of diverse immunity gene arrays in Vibrio cholerae , 2017, Scientific Reports.

[9]  Davi R. Ortega,et al.  In vivo structures of an intact type VI secretion system revealed by electron cryotomography , 2017, bioRxiv.

[10]  Zihao Pan,et al.  The Hcp proteins fused with diverse extended-toxin domains represent a novel pattern of antibacterial effectors in type VI secretion systems , 2017, Virulence.

[11]  E. Cascales,et al.  Domestication of a housekeeping transglycosylase for assembly of a Type VI secretion system , 2017, EMBO reports.

[12]  Nichollas E. Scott,et al.  Genetic Dissection of the Type VI Secretion System in Acinetobacter and Identification of a Novel Peptidoglycan Hydrolase, TagX, Required for Its Biogenesis , 2016, mBio.

[13]  M. Basler,et al.  Type VI Secretion System Substrates Are Transferred and Reused among Sister Cells , 2016, Cell.

[14]  Erh-Min Lai,et al.  VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor–effector complex , 2016, Proceedings of the National Academy of Sciences.

[15]  P. Freemont,et al.  TssA forms a gp6‐like ring attached to the type VI secretion sheath , 2016, The EMBO journal.

[16]  Richard A. Moore,et al.  Chelation of Membrane-Bound Cations by Extracellular DNA Activates the Type VI Secretion System in Pseudomonas aeruginosa , 2016, Infection and Immunity.

[17]  H. Stahlberg,et al.  Structure of the T4 baseplate and its function in triggering sheath contraction , 2016, Nature.

[18]  C. Cambillau,et al.  Priming and polymerization of a bacterial contractile tail structure , 2016, Nature.

[19]  S. Coulthurst,et al.  Molecular weaponry: diverse effectors delivered by the Type VI secretion system , 2015, Cellular microbiology.

[20]  M. Valvano,et al.  Quantification of type VI secretion system activity in macrophages infected with Burkholderia cenocepacia. , 2015, Microbiology.

[21]  E. Cascales,et al.  The Type VI Secretion TssEFGK-VgrG Phage-Like Baseplate Is Recruited to the TssJLM Membrane Complex via Multiple Contacts and Serves As Assembly Platform for Tail Tube/Sheath Polymerization , 2015, PLoS genetics.

[22]  A. Desmyter,et al.  Biogenesis and structure of a type VI secretion membrane core complex , 2015, Nature.

[23]  S. Pukatzki,et al.  Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae , 2015, The EMBO journal.

[24]  Xiaoye Liang,et al.  Identification of divergent type VI secretion effectors using a conserved chaperone domain , 2015, Proceedings of the National Academy of Sciences.

[25]  Yufeng Yao,et al.  SecReT6: a web-based resource for type VI secretion systems found in bacteria. , 2015, Environmental microbiology.

[26]  Gabriel Waksman,et al.  Secretion systems in Gram-negative bacteria: structural and mechanistic insights , 2015, Nature Reviews Microbiology.

[27]  Z. Zhou,et al.  Atomic structures of a bactericidal contractile nanotube in its pre- and postcontraction states , 2015, Nature Structural &Molecular Biology.

[28]  Z. Zhou,et al.  Atomic Structure of T6SS Reveals Interlaced Array Essential to Function , 2015, Cell.

[29]  David Baker,et al.  Structure of the Type VI Secretion System Contractile Sheath , 2015, Cell.

[30]  M. Blokesch,et al.  The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer , 2015, Science.

[31]  D. Goodlett,et al.  A type VI secretion-related pathway in Bacteroidetes mediates interbacterial antagonism. , 2014, Cell host & microbe.

[32]  Q. Jin,et al.  A Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells. , 2014, Cell host & microbe.

[33]  A. Filloux,et al.  The VgrG Proteins Are “à la Carte” Delivery Systems for Bacterial Type VI Effectors* , 2014, The Journal of Biological Chemistry.

[34]  S. Pukatzki,et al.  The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition , 2014, Nature Communications.

[35]  G. Fichant,et al.  Bacterial transformation: distribution, shared mechanisms and divergent control , 2014, Nature Reviews Microbiology.

[36]  S. B. Peterson,et al.  Type VI secretion system effectors: poisons with a purpose , 2014, Nature Reviews Microbiology.

[37]  J. Mekalanos,et al.  Type 6 Secretion System–Mediated Immunity to Type 4 Secretion System–Mediated Gene Transfer , 2013, Science.

[38]  T. Gonen,et al.  Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates. , 2013, Molecular cell.

[39]  J. Mekalanos,et al.  PAAR-repeat proteins sharpen and diversify the Type VI secretion system spike , 2013, Nature.

[40]  Paul A. Wiggins,et al.  Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors , 2013, Nature.

[41]  J. Mekalanos,et al.  Tit-for-Tat: Type VI Secretion System Counterattack during Bacterial Cell-Cell Interactions , 2013, Cell.

[42]  J. Mekalanos,et al.  Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae , 2013, Proceedings of the National Academy of Sciences.

[43]  Eric P. Skaar,et al.  Genomic and Functional Analysis of the Type VI Secretion System in Acinetobacter , 2013, PloS one.

[44]  J. Mekalanos,et al.  Type 6 Secretion Dynamics Within and Between Bacterial Cells , 2012, Science.

[45]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[46]  Vivek Anantharaman,et al.  Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics , 2012, Biology Direct.

[47]  D. Goodlett,et al.  A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. , 2012, Cell host & microbe.

[48]  G. Jensen,et al.  Type VI secretion requires a dynamic contractile phage tail-like structure , 2012, Nature.

[49]  J. M. Silverman,et al.  Separate inputs modulate phosphorylation‐dependent and ‐independent type VI secretion activation , 2011, Molecular microbiology.

[50]  Mark S. Thomas,et al.  Anchoring the type VI secretion system to the peptidoglycan: TssL, TagL, TagP... what else? , 2010, Virulence.

[51]  R. Avci,et al.  Bacteria survive multiple puncturings of their cell walls. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[52]  Alexander V. Diemand,et al.  Remodelling of VipA/VipB tubules by ClpV‐mediated threading is crucial for type VI protein secretion , 2009, The EMBO journal.

[53]  Christopher M. Bailey,et al.  Type VI secretion: a beginner's guide. , 2008, Current opinion in microbiology.

[54]  Andrew T. Revel,et al.  Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin , 2007, Proceedings of the National Academy of Sciences.

[55]  Jagjit S Ludu,et al.  The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth , 2007, BMC Microbiology.

[56]  W. Nelson,et al.  Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Y. Michel-Briand,et al.  The pyocins of Pseudomonas aeruginosa. , 2002, Biochimie.

[58]  J. Lederberg STREPTOMYCIN RESISTANCE: A GENETICALLY RECESSIVE MUTATION , 1951, Journal of bacteriology.

[59]  Philippe Marlière,et al.  Acinetobacter sp. ADP1: an ideal model organism for genetic analysis and genome engineering. , 2004, Nucleic acids research.

[60]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[61]  Michael Unser,et al.  A pyramid approach to subpixel registration based on intensity , 1998, IEEE Trans. Image Process..