Semiclassical Spectral Asymptotics for a Two-Dimensional Magnetic Schrödinger Operator II: The Case of Degenerate Wells
暂无分享,去创建一个
[1] Bernard Helffer,et al. Spectral Methods in Surface Superconductivity , 2010 .
[2] B. Helffer,et al. Semiclassical spectral asymptotics for a two-dimensional magnetic Schr\"odinger operator: The case of discrete wells , 2010 .
[3] Nicolas Raymond,et al. On the semiclassical 3D Neumann Laplacian with variable magnetic field , 2009, Asymptot. Anal..
[4] N. Raymond. Sharp Asymptotics for the Neumann Laplacian with Variable Magnetic Field: Case of Dimension 2 , 2008, 0806.1309.
[5] B. Helffer,et al. Semiclassical analysis of Schr\"odinger operators with magnetic wells , 2008, 0812.5038.
[6] B. Helffer,et al. Periodic magnetic Schrödinger operators: Spectral gaps and tunneling effect , 2008 .
[7] B. Helffer,et al. Spectral gaps for periodic Schr\"odinger operators with hypersurface magnetic wells , 2008 .
[8] B. Helffer,et al. Spectral gaps for periodic Schrödinger operators with hypersurface magnetic wells: Analysis near the bottom , 2008, 0801.4460.
[9] B. Helffer,et al. Semiclassical asymptotics and gaps in the spectra of periodic Schr , 2006, math/0601366.
[10] Y. Kordyukov. Semiclassical Asymptotics and Spectral Gaps for Periodic Magnetic Schrödinger Operators on Covering Manifolds , 2006 .
[11] Bernard Helffer,et al. Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian , 2006 .
[12] Y. Kordyukov. Spectral Gaps for Periodic Schrödinger Operators with Strong Magnetic Fields , 2003, math/0311200.
[13] S. Dobrokhotov,et al. The Spectral Asymptotics of the Two-Dimensional Schr\ , 2004, math-ph/0411012.
[14] O. Post,et al. Spectral Gaps for Periodic Elliptic Operators with High Contrast: an Overview , 2002, math-ph/0207020.
[15] B. Helffer,et al. Magnetic bottles for the Neumann problem: The case of dimension 3 , 2002 .
[16] B. Helffer,et al. Magnetic Bottles in Connection with Superconductivity , 2001 .
[17] M. Shubin,et al. Semiclassical Asymptotics and Gaps in the Spectra of Magnetic Schrödinger Operators , 2001, math/0102021.
[18] Bernard Helffer,et al. Magnetic bottles for the Neumann problem: curvature effects in the case of dimension 3 , 2001 .
[19] A. Veselov,et al. Integrable Schrödinger operators with magnetic fields: Factorization method on curved surfaces , 2000, math-ph/0007034.
[20] P. Sternberg,et al. Boundary Concentration for Eigenvalue Problems Related to the Onset of Superconductivity , 2000 .
[21] Xing-Bin Pan,et al. Eigenvalue problems of Ginzburg–Landau operator in bounded domains , 1999 .
[22] I. Herbst,et al. Schrödinger operators with strong magnetic fields: Quasi-periodicity of spectral orbits and topology , 1999 .
[23] H. Matsumoto,et al. Spectral Analysis of Schrödinger Operators with Magnetic Fields , 1996 .
[24] B. Helffer,et al. Semiclassical Analysis for the Ground State Energy of a Schrödinger Operator with Magnetic Wells , 1996 .
[25] I. Herbst,et al. Strong magnetic fields, Dirichlet boundaries, and spectral gaps , 1995 .
[26] Richard Montgomery,et al. Hearing the zero locus of a magnetic field , 1995 .
[27] H. Matsumoto. Semiclassical Asymptotics of Eigenvalues for Schrödinger Operators with Magnetic Fields , 1995 .
[28] S. Nakamura. Band Spectrum for Schrödinger Operators with Strong Periodic Magnetic Fields , 1995 .
[29] Michèle Vergne,et al. Heat Kernels and Dirac Operators: Grundlehren 298 , 1992 .
[30] Bernard Helffer,et al. Equation de Schrödinger avec champ magnétique et équation de Harper , 1989 .
[31] Ruishi Kuwabara. SPECTRUM OF THE SCHRÖDINGER OPERATOR ON A LINE BUNDLE OVER COMPLEX PROJECTIVE SPACES , 1988 .
[32] B. Helffer,et al. Analyse semi-classique pour l'équation de Harper (avec application à l'équation de Schrödinger avec champ magnétique) , 1988 .
[33] B. Helffer,et al. Effet tunnel pour l'équation de Schrödinger avec champ magnétique , 1987 .
[34] A. Comtet. On the Landau Levels on the Hyperbolic Plane , 1987 .
[35] Ruishi Kuwabara. On Spectra of the Laplacian on Vector Bundles , 1982 .
[36] T. Wu,et al. Dirac monopole without strings : monopole harmonics , 1976 .
[37] Tai Tsun Wu,et al. Concept of Nonintegrable Phase Factors and Global Formulation of Gauge Fields , 1975 .
[38] J. Elstrodt. Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. Teil III , 1974 .
[39] J. Elstrodt. Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. Teil II , 1973 .
[40] J. B. Westerdijk,et al. Strong Magnetic Fields , 1946, Nature.