Semiclassical Spectral Asymptotics for a Two-Dimensional Magnetic Schrödinger Operator II: The Case of Degenerate Wells

We continue our study of a magnetic Schrödinger operator on a two-dimensional compact Riemannian manifold in the case when the minimal value of the module of the magnetic field is strictly positive. We analyze the case when the magnetic field has degenerate magnetic wells. The main result of the paper is an asymptotics of the groundstate energy of the operator in the semiclassical limit. The upper bounds are improved in the case when we have a localization by a miniwell effect of lowest order. These results are applied to prove the existence of an arbitrary large number of spectral gaps in the semiclassical limit in the corresponding periodic setting.

[1]  Bernard Helffer,et al.  Spectral Methods in Surface Superconductivity , 2010 .

[2]  B. Helffer,et al.  Semiclassical spectral asymptotics for a two-dimensional magnetic Schr\"odinger operator: The case of discrete wells , 2010 .

[3]  Nicolas Raymond,et al.  On the semiclassical 3D Neumann Laplacian with variable magnetic field , 2009, Asymptot. Anal..

[4]  N. Raymond Sharp Asymptotics for the Neumann Laplacian with Variable Magnetic Field: Case of Dimension 2 , 2008, 0806.1309.

[5]  B. Helffer,et al.  Semiclassical analysis of Schr\"odinger operators with magnetic wells , 2008, 0812.5038.

[6]  B. Helffer,et al.  Periodic magnetic Schrödinger operators: Spectral gaps and tunneling effect , 2008 .

[7]  B. Helffer,et al.  Spectral gaps for periodic Schr\"odinger operators with hypersurface magnetic wells , 2008 .

[8]  B. Helffer,et al.  Spectral gaps for periodic Schrödinger operators with hypersurface magnetic wells: Analysis near the bottom , 2008, 0801.4460.

[9]  B. Helffer,et al.  Semiclassical asymptotics and gaps in the spectra of periodic Schr , 2006, math/0601366.

[10]  Y. Kordyukov Semiclassical Asymptotics and Spectral Gaps for Periodic Magnetic Schrödinger Operators on Covering Manifolds , 2006 .

[11]  Bernard Helffer,et al.  Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian , 2006 .

[12]  Y. Kordyukov Spectral Gaps for Periodic Schrödinger Operators with Strong Magnetic Fields , 2003, math/0311200.

[13]  S. Dobrokhotov,et al.  The Spectral Asymptotics of the Two-Dimensional Schr\ , 2004, math-ph/0411012.

[14]  O. Post,et al.  Spectral Gaps for Periodic Elliptic Operators with High Contrast: an Overview , 2002, math-ph/0207020.

[15]  B. Helffer,et al.  Magnetic bottles for the Neumann problem: The case of dimension 3 , 2002 .

[16]  B. Helffer,et al.  Magnetic Bottles in Connection with Superconductivity , 2001 .

[17]  M. Shubin,et al.  Semiclassical Asymptotics and Gaps in the Spectra of Magnetic Schrödinger Operators , 2001, math/0102021.

[18]  Bernard Helffer,et al.  Magnetic bottles for the Neumann problem: curvature effects in the case of dimension 3 , 2001 .

[19]  A. Veselov,et al.  Integrable Schrödinger operators with magnetic fields: Factorization method on curved surfaces , 2000, math-ph/0007034.

[20]  P. Sternberg,et al.  Boundary Concentration for Eigenvalue Problems Related to the Onset of Superconductivity , 2000 .

[21]  Xing-Bin Pan,et al.  Eigenvalue problems of Ginzburg–Landau operator in bounded domains , 1999 .

[22]  I. Herbst,et al.  Schrödinger operators with strong magnetic fields: Quasi-periodicity of spectral orbits and topology , 1999 .

[23]  H. Matsumoto,et al.  Spectral Analysis of Schrödinger Operators with Magnetic Fields , 1996 .

[24]  B. Helffer,et al.  Semiclassical Analysis for the Ground State Energy of a Schrödinger Operator with Magnetic Wells , 1996 .

[25]  I. Herbst,et al.  Strong magnetic fields, Dirichlet boundaries, and spectral gaps , 1995 .

[26]  Richard Montgomery,et al.  Hearing the zero locus of a magnetic field , 1995 .

[27]  H. Matsumoto Semiclassical Asymptotics of Eigenvalues for Schrödinger Operators with Magnetic Fields , 1995 .

[28]  S. Nakamura Band Spectrum for Schrödinger Operators with Strong Periodic Magnetic Fields , 1995 .

[29]  Michèle Vergne,et al.  Heat Kernels and Dirac Operators: Grundlehren 298 , 1992 .

[30]  Bernard Helffer,et al.  Equation de Schrödinger avec champ magnétique et équation de Harper , 1989 .

[31]  Ruishi Kuwabara SPECTRUM OF THE SCHRÖDINGER OPERATOR ON A LINE BUNDLE OVER COMPLEX PROJECTIVE SPACES , 1988 .

[32]  B. Helffer,et al.  Analyse semi-classique pour l'équation de Harper (avec application à l'équation de Schrödinger avec champ magnétique) , 1988 .

[33]  B. Helffer,et al.  Effet tunnel pour l'équation de Schrödinger avec champ magnétique , 1987 .

[34]  A. Comtet On the Landau Levels on the Hyperbolic Plane , 1987 .

[35]  Ruishi Kuwabara On Spectra of the Laplacian on Vector Bundles , 1982 .

[36]  T. Wu,et al.  Dirac monopole without strings : monopole harmonics , 1976 .

[37]  Tai Tsun Wu,et al.  Concept of Nonintegrable Phase Factors and Global Formulation of Gauge Fields , 1975 .

[38]  J. Elstrodt Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. Teil III , 1974 .

[39]  J. Elstrodt Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. Teil II , 1973 .

[40]  J. B. Westerdijk,et al.  Strong Magnetic Fields , 1946, Nature.