INTERVAL GAUSSIAN ELIMINATION WITH PIVOT TIGHTENING∗

We present a method by which the breakdown of the interval Gaussian elimination caused by division of an interval containing zero can be avoided for some classes of matrices. These include the inverse nonnegative matrices, the totally nonnegative matrices, and the inverse M -matrices—all classes with identically signed inverses. The approach consists of a tightening of the interval pivot by determining the exact range of the pivot over the matrix interval.

[1]  Jürgen Garloff,et al.  Criteria for sign regularity of sets of matrices , 1982 .

[2]  Shalhav Zohar,et al.  The Solution of a Toeplitz Set of Linear Equations , 1974, JACM.

[3]  W. F. Trench An Algorithm for the Inversion of Finite Toeplitz Matrices , 1964 .

[4]  Jürgen Garloff,et al.  TOTALLY NONNEGATIVE INTERVAL MATRICES , 1980 .

[5]  Jan Mayer An Approach to Overcome Division by Zero in the Interval Gauss Algorithm , 2002, Reliab. Comput..

[6]  Karl Reichmann Abbruch beim Intervall-Gauß-Algorithmus , 2005, Computing.

[7]  Jürgen Garloff,et al.  Vertex Implications for Totally Nonnegative Matrices , 1996 .

[8]  Günter Mayer,et al.  A Contribution to the Feasibility of the Interval Gaussian Algorithm , 2006, Reliab. Comput..

[9]  Charles R. Johnson Inverse M-matrices☆ , 1982 .

[10]  Kurt Metelmann Inverspositive Bandmatrizen und totalnichtnegative Green'sche Matrizen , 1972 .

[11]  R. Willoughby The inverse M-matrix problem , 1977 .

[12]  T. Andô Totally positive matrices , 1987 .

[13]  Juan Manuel Peña,et al.  Total positivity and Neville elimination , 1992 .

[14]  Charles R. Johnson,et al.  Almost principal minors of inverse M-matrices , 2001 .

[15]  J. Kuttler,et al.  A fourth-order finite-difference approximation for the fixed membrane eigenproblem , 1971 .

[16]  R. B. Kearfott,et al.  A Comparison of some Methods for Solving Linear Interval Equations , 1997 .

[17]  J. Urgen Garloo,et al.  Intervals of Almost Totally Positive Matrices , 1984 .

[18]  Götz Alefeld,et al.  The Cholesky method for interval data , 1993 .

[19]  E. Bareiss Numerical solution of linear equations with Toeplitz and Vector Toeplitz matrices , 1969 .

[20]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[21]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[22]  Ronald L. Smith,et al.  Intervals of Inverse M-Matrices , 2002, Reliab. Comput..

[23]  A. Neumaier Interval methods for systems of equations , 1990 .