Application of in situ-generated Rh-bound trimethylenemethane variants to the synthesis of 3,4-fused pyrroles.

Rh-bound trimethylenemethane variants generated from the interaction of a Rh-carbenoid with an allene have been applied to the synthesis of substituted 3,4-fused pyrroles. The pyrrole products are useful starting points for the syntheses of various dipyrromethene ligands. Furthermore, the methodology has been applied to a synthesis of the natural product cycloprodigiosin, which demonstrates antitumor and immunosuppressor activity.

[1]  M. Murakami,et al.  One-pot procedure for the introduction of three different bonds onto terminal alkynes through N-sulfonyl-1,2,3-triazole intermediates. , 2013, Angewandte Chemie.

[2]  H. Davies,et al.  Rhodium-catalyzed conversion of furans to highly functionalized pyrroles. , 2013, Journal of the American Chemical Society.

[3]  V. Fokin,et al.  Sulfonyl-1,2,3-triazoles: convenient synthones for heterocyclic compounds. , 2013, Angewandte Chemie.

[4]  M. Murakami,et al.  Synthesis of enaminones by rhodium-catalyzed denitrogenative rearrangement of 1-(N-sulfonyl-1,2,3-triazol-4-yl)alkanols. , 2012, Journal of the American Chemical Society.

[5]  K. S. Feldman,et al.  Allenyl azide cycloaddition chemistry: application to the total synthesis of (±)-meloscine. , 2012, Organic letters.

[6]  M. Murakami,et al.  Synthesis of α-amino ketones from terminal alkynes via rhodium-catalyzed denitrogenative hydration of N-sulfonyl-1,2,3-triazoles. , 2012, Journal of the American Chemical Society.

[7]  T. Oh,et al.  Exceptional Production of both Prodigiosin and Cycloprodigiosin as Major Metabolic Constituents by a Novel Marine Bacterium, Zooshikella rubidus S1-1 , 2011, Applied and Environmental Microbiology.

[8]  D. Salvemini,et al.  Manganese(III) complexes of bis(hydroxyphenyl)dipyrromethenes are potent orally active peroxynitrite scavengers. , 2011, Journal of the American Chemical Society.

[9]  R. J. Thomson,et al.  Enantioselective total synthesis and confirmation of the absolute and relative stereochemistry of streptorubin B. , 2011, Journal of the American Chemical Society.

[10]  S. Blakey,et al.  Rhodium catalyzed allene amidation: a facile entry into 2-amidoallylcations for unusual [3 + 3] annulation reactions , 2011 .

[11]  N. L. Allinger Molecular Structure: Understanding Steric and Electronic Effects from Molecular Mechanics , 2010 .

[12]  Jason E Hein,et al.  Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. , 2010, Chemical Society reviews.

[13]  S. Blakey,et al.  Rhodium catalyzed allene amination: diastereoselective synthesis of aminocyclopropanes via a 2-amidoallylcation intermediate. , 2010, Journal of the American Chemical Society.

[14]  C. Lindsley,et al.  Evaluation of the biosynthetic proposal for the synthesis of marineosins A and B. , 2010, Organic letters.

[15]  R. J. Thomson,et al.  Development of a merged conjugate addition/oxidative coupling sequence. Application to the enantioselective total synthesis of metacycloprodigiosin and prodigiosin R1. , 2009, Journal of the American Chemical Society.

[16]  H. J. Martin,et al.  Total synthesis of the antibiotic kendomycin by macrocyclization using photo-Fries rearrangement and ring-closing metathesis. , 2009, Angewandte Chemie.

[17]  M. Murakami,et al.  Nickel-catalysed denitrogenative alkyne insertion reactions of N-sulfonyl-1,2,3-triazoles. , 2009, Chemical communications.

[18]  K. Sainis,et al.  Prodigiosins as anti cancer agents: living upto their name. , 2009, Current pharmaceutical design.

[19]  V. Fokin,et al.  Rhodium-catalyzed transannulation of 1,2,3-triazoles with nitriles. , 2008, Journal of the American Chemical Society.

[20]  Kevin Burgess,et al.  BODIPY dyes and their derivatives: syntheses and spectroscopic properties. , 2007, Chemical reviews.

[21]  I. Marek,et al.  Enantiomerically enriched cyclopropene derivatives: versatile building blocks in asymmetric synthesis. , 2007, Angewandte Chemie.

[22]  K. Sainis,et al.  Prodigiosins: a novel family of immunosuppressants with anti-cancer activity. , 2007, Indian journal of biochemistry & biophysics.

[23]  J. Fox,et al.  Rh-Catalyzed Intermolecular Reactions of Alkynes with α-Diazoesters That Possess β-Hydrogens: Ligand-Based Control over Divergent Pathways , 2007 .

[24]  S. Morikawa,et al.  Synergistic Effects Induced by Cycloprodigiosin Hydrochloride and Epirubicin on Human Breast Cancer Cells , 2002, Breast Cancer Research and Treatment.

[25]  A. Fürstner Chemistry and biology of roseophilin and the prodigiosin alkaloids: a survey of the last 2500 years. , 2003, Angewandte Chemie.

[26]  S. Cicchi,et al.  Heterocycles from alkylidenecyclopropanes. , 2003, Chemical reviews.

[27]  I. Nakamura,et al.  Transition Metal‐Catalyzed Reactions of Methylenecyclopropanes , 2002 .

[28]  H. Kamata,et al.  Cycloprodigiosin hydrocloride suppresses tumor necrosis factor (TNF) α‐induced transcriptional activation by NF‐κB , 2001 .

[29]  H. Hirata,et al.  Cycloprodigiosin hydrochloride, H+/CL– symporter, induces apoptosis and differentiation in HL‐60 cells , 2000, International journal of cancer.

[30]  T. Seki,et al.  Cycloprodigiosin hydrochloride, a new H+/Cl− symporter, induces apoptosis in human and rat hepatocellular cancer cell lines in vitro and inhibits the growth of hepatocellular carcinoma xenografts in nude mice , 1999, Hepatology.

[31]  M. Monge,et al.  Synthesis, Structure, and Reactivity of the First Enantiomerically Pure Ortho-Metalated Rhodium(II) Dimer , 1999 .

[32]  A. Fürstner,et al.  Platinum- and Acid-Catalyzed Enyne Metathesis Reactions: Mechanistic Studies and Applications to the Syntheses of Streptorubin B and Metacycloprodigiosin , 1998 .

[33]  A. Brandi,et al.  Synthesis of Methylene- and Alkylidenecyclopropane Derivatives. , 1998, Chemical reviews.

[34]  R. Little,et al.  The Versatile Trimethylenemethane Diyl; Diyl Trapping Reactions − Retrospective and New Modes of Reactivity , 1998 .

[35]  R. Little Diyl Trapping and Electroreductive Cyclization Reactions. , 1996, Chemical reviews.

[36]  N. Lebel,et al.  Stereospecific synthesis of 2,3,6-trisubstituted piperidines: an efficient total synthesis of (.+-.)-pumiliotoxin C , 1989 .

[37]  H. Wasserman,et al.  The chemistry of vicinal tricarbonyls a total synthesis of prodigiosin , 1989 .

[38]  D. Boger,et al.  Total synthesis of prodigiosin, prodigiosene, and desmethoxyprodigiosin: Diels-Alder reactions of heterocyclic azadienes and development of an effective palladium(II)-promoted 2,2'-bipyrrole coupling procedure , 1988 .

[39]  D. Boger,et al.  Total synthesis of prodigiosin , 1987 .

[40]  H. Büch,et al.  Cyclopropenes and methylenecylopropanes as multifunctional reagents in transition metal catalyzed reactions , 1987 .

[41]  B. Trost [3+2] Cycloaddition Approaches to Five‐Membered Rings via Trimethylenemethane and Its Equivalents [New Synthetic Methods (55)] , 1986 .

[42]  R. Little,et al.  Intramolecular 1,3-diyl trapping reactions. Use of a diylophile directly linked to the diyl. Preparation of bicyclic furans , 1985 .

[43]  H. Wasserman,et al.  The synthesis of (±)-cycloprodigiosin , 1984 .

[44]  R. H. Thomson,et al.  A revised structure for cycloprodigiosin , 1983 .

[45]  N. N. Gerber Cycloprodigiosin from beneckea gazogenes , 1983 .

[46]  H. Wasserman,et al.  The synthesis of metacycloprodigionsin , 1976 .

[47]  H. Takaya,et al.  Homogeneous catalysis in the decomposition of diazo compounds by copper chelates , 1968 .

[48]  M. Ciampolini,et al.  45. Pseudo-tetrahedral structure of some α-branched copper(II) chelates with Schiff bases , 1964 .

[49]  H. Rapoport,et al.  The Synthesis of Prodigiosin , 1960 .

[50]  R. Charles Copper (II) and Nickel (II) N-(n-alkyl)salicylaldimine Chelates , 1957 .

[51]  W. Moffitt The residual affinity of conjugated and resonating hydrocarbons , 1949 .