Finite Correlation Length Implies Efficient Preparation of Quantum Thermal States

[1]  Mark M. Wilde,et al.  Universal Recovery Maps and Approximate Sufficiency of Quantum Relative Entropy , 2015, Annales Henri Poincaré.

[2]  J. Eisert,et al.  Approximating local observables on projected entangled pair states , 2016, 1606.06301.

[3]  Robert König,et al.  Quantum entropy and its use , 2017 .

[4]  J. McGreevy,et al.  Mixed s-sourcery: Building many-body states using bubbles of Nothing , 2016, 1607.05753.

[5]  J. Cirac,et al.  Rapid Adiabatic Preparation of Injective Projected Entangled Pair States and Gibbs States. , 2016, Physical review letters.

[6]  Jiannis K. Pachos,et al.  Quantum memories at finite temperature , 2014, 1411.6643.

[7]  John McGreevy,et al.  Renormalization group constructions of topological quantum liquids and beyond , 2014, 1407.8203.

[8]  A. Winter,et al.  Universal recovery from a decrease of quantum relative entropy , 2015, ArXiv.

[9]  Courtney G. Brell A proposal for self-correcting stabilizer quantum memories in 3 dimensions (or slightly less) , 2014, 1411.7046.

[10]  R. Renner,et al.  Quantum Conditional Mutual Information and Approximate Markov Chains , 2014, Communications in Mathematical Physics.

[11]  Fernando G. S. L. Brandão,et al.  Quantum Gibbs Samplers: The Commuting Case , 2014, Communications in Mathematical Physics.

[12]  F. Pastawski,et al.  Generating topological order: No speedup by dissipation , 2013, 1310.1037.

[13]  Justyna P. Zwolak,et al.  Stability of Frustration-Free Hamiltonians , 2011, 1109.1588.

[14]  Isaac H. Kim Perturbative analysis of topological entanglement entropy from conditional independence , 2011, 1109.3496.

[15]  Kamil Michnicki,et al.  3-d quantum stabilizer codes with a power law energy barrier , 2012, 1208.3496.

[16]  Matthew B Hastings,et al.  Topological order at nonzero temperature. , 2011, Physical review letters.

[17]  Jeongwan Haah Local stabilizer codes in three dimensions without string logical operators , 2011, 1101.1962.

[18]  F. Verstraete,et al.  Quantum Metropolis sampling , 2009, Nature.

[19]  S. Boixo,et al.  Preparing thermal states of quantum systems by dimension reduction. , 2010, Physical review letters.

[20]  D. Poulin,et al.  Coarse-grained belief propagation for simulation of interacting quantum systems at all temperatures , 2009, 0910.2299.

[21]  B. Terhal,et al.  Tradeoffs for reliable quantum information storage in 2D systems , 2009, Quantum Cryptography and Computing.

[22]  Michal Horodecki,et al.  On Thermal Stability of Topological Qubit in Kitaev's 4D Model , 2008, Open Syst. Inf. Dyn..

[23]  F. Verstraete,et al.  Quantum computation and quantum-state engineering driven by dissipation , 2009 .

[24]  D. Poulin,et al.  Sampling from the thermal quantum Gibbs state and evaluating partition functions with a quantum computer. , 2009, Physical review letters.

[25]  D. Poulin,et al.  Belief propagation algorithm for computing correlation functions in finite-temperature quantum many-body systems on loopy graphs , 2007, 0710.4304.

[26]  Matthew B Hastings,et al.  Area laws in quantum systems: mutual information and correlations. , 2007, Physical review letters.

[27]  M. Hastings Quantum belief propagation: An algorithm for thermal quantum systems , 2007, 0706.4094.

[28]  K. Audenaert A sharp continuity estimate for the von Neumann entropy , 2006, quant-ph/0610146.

[29]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[30]  Michael Levin,et al.  String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.

[31]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[32]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[33]  Alice Guionnet,et al.  Lectures on Logarithmic Sobolev Inequalities , 2003 .

[34]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[35]  D. DiVincenzo,et al.  Problem of equilibration and the computation of correlation functions on a quantum computer , 1998, quant-ph/9810063.

[36]  F. Martinelli Lectures on Glauber dynamics for discrete spin models , 1999 .

[37]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[38]  Persi Diaconis,et al.  What do we know about the Metropolis algorithm? , 1995, STOC '95.

[39]  F. Martinelli,et al.  For 2-D lattice spin systems weak mixing implies strong mixing , 1994 .

[40]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[41]  H. Araki Gibbs states of a one dimensional quantum lattice , 1969 .