Finite Correlation Length Implies Efficient Preparation of Quantum Thermal States
暂无分享,去创建一个
[1] Mark M. Wilde,et al. Universal Recovery Maps and Approximate Sufficiency of Quantum Relative Entropy , 2015, Annales Henri Poincaré.
[2] J. Eisert,et al. Approximating local observables on projected entangled pair states , 2016, 1606.06301.
[3] Robert König,et al. Quantum entropy and its use , 2017 .
[4] J. McGreevy,et al. Mixed s-sourcery: Building many-body states using bubbles of Nothing , 2016, 1607.05753.
[5] J. Cirac,et al. Rapid Adiabatic Preparation of Injective Projected Entangled Pair States and Gibbs States. , 2016, Physical review letters.
[6] Jiannis K. Pachos,et al. Quantum memories at finite temperature , 2014, 1411.6643.
[7] John McGreevy,et al. Renormalization group constructions of topological quantum liquids and beyond , 2014, 1407.8203.
[8] A. Winter,et al. Universal recovery from a decrease of quantum relative entropy , 2015, ArXiv.
[9] Courtney G. Brell. A proposal for self-correcting stabilizer quantum memories in 3 dimensions (or slightly less) , 2014, 1411.7046.
[10] R. Renner,et al. Quantum Conditional Mutual Information and Approximate Markov Chains , 2014, Communications in Mathematical Physics.
[11] Fernando G. S. L. Brandão,et al. Quantum Gibbs Samplers: The Commuting Case , 2014, Communications in Mathematical Physics.
[12] F. Pastawski,et al. Generating topological order: No speedup by dissipation , 2013, 1310.1037.
[13] Justyna P. Zwolak,et al. Stability of Frustration-Free Hamiltonians , 2011, 1109.1588.
[14] Isaac H. Kim. Perturbative analysis of topological entanglement entropy from conditional independence , 2011, 1109.3496.
[15] Kamil Michnicki,et al. 3-d quantum stabilizer codes with a power law energy barrier , 2012, 1208.3496.
[16] Matthew B Hastings,et al. Topological order at nonzero temperature. , 2011, Physical review letters.
[17] Jeongwan Haah. Local stabilizer codes in three dimensions without string logical operators , 2011, 1101.1962.
[18] F. Verstraete,et al. Quantum Metropolis sampling , 2009, Nature.
[19] S. Boixo,et al. Preparing thermal states of quantum systems by dimension reduction. , 2010, Physical review letters.
[20] D. Poulin,et al. Coarse-grained belief propagation for simulation of interacting quantum systems at all temperatures , 2009, 0910.2299.
[21] B. Terhal,et al. Tradeoffs for reliable quantum information storage in 2D systems , 2009, Quantum Cryptography and Computing.
[22] Michal Horodecki,et al. On Thermal Stability of Topological Qubit in Kitaev's 4D Model , 2008, Open Syst. Inf. Dyn..
[23] F. Verstraete,et al. Quantum computation and quantum-state engineering driven by dissipation , 2009 .
[24] D. Poulin,et al. Sampling from the thermal quantum Gibbs state and evaluating partition functions with a quantum computer. , 2009, Physical review letters.
[25] D. Poulin,et al. Belief propagation algorithm for computing correlation functions in finite-temperature quantum many-body systems on loopy graphs , 2007, 0710.4304.
[26] Matthew B Hastings,et al. Area laws in quantum systems: mutual information and correlations. , 2007, Physical review letters.
[27] M. Hastings. Quantum belief propagation: An algorithm for thermal quantum systems , 2007, 0706.4094.
[28] K. Audenaert. A sharp continuity estimate for the von Neumann entropy , 2006, quant-ph/0610146.
[29] H. Bombin,et al. Topological quantum distillation. , 2006, Physical review letters.
[30] Michael Levin,et al. String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.
[31] J. Eisert,et al. Multiparty entanglement in graph states , 2003, quant-ph/0307130.
[32] A. Kitaev,et al. Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.
[33] Alice Guionnet,et al. Lectures on Logarithmic Sobolev Inequalities , 2003 .
[34] J. Preskill,et al. Topological quantum memory , 2001, quant-ph/0110143.
[35] D. DiVincenzo,et al. Problem of equilibration and the computation of correlation functions on a quantum computer , 1998, quant-ph/9810063.
[36] F. Martinelli. Lectures on Glauber dynamics for discrete spin models , 1999 .
[37] Daniel Gottesman,et al. Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.
[38] Persi Diaconis,et al. What do we know about the Metropolis algorithm? , 1995, STOC '95.
[39] F. Martinelli,et al. For 2-D lattice spin systems weak mixing implies strong mixing , 1994 .
[40] D. Petz,et al. Quantum Entropy and Its Use , 1993 .
[41] H. Araki. Gibbs states of a one dimensional quantum lattice , 1969 .